(本小題9分)已知點P(-4,3)和圓.自P向圓引割線,所得弦長為,求此割線所在直線的方程.

 

【答案】

直線方程為y=3或

【解析】解:設(shè)直線方程為……………2分

由題意可知,直線到圓心距離=3……………………… 5分

所以  ,…………………………………………………..7分

解得k=0或k=!...8分

所求直線方程為y=3或…………………………….9分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等軸雙曲線C的兩個焦點F1、F2在直線y=x上,線段F1F2的中點是坐標(biāo)原點,且雙曲線經(jīng)過點(3,
3
2
).
(1)若已知下列所給的三個方程中有一個是等軸雙曲線C的方程:①x2-y2=
27
4
;②xy=9;③xy=
9
2
.請確定哪個是等軸雙曲線C的方程,并求出此雙曲線的實軸長;
(2)現(xiàn)要在等軸雙曲線C上選一處P建一座碼頭,向A(3,3)、B(9,6)兩地轉(zhuǎn)運貨物.經(jīng)測算,從P到A、從P到B修建公路的費用都是每單位長度a萬元,則碼頭應(yīng)建在何處,才能使修建兩條公路的總費用最低?
(3)如圖,函數(shù)y=
3
3
x+
1
x
的圖象也是雙曲線,請嘗試研究此雙曲線的性質(zhì),你能得到哪些結(jié)論?(本小題將按所得到的雙曲線性質(zhì)的數(shù)量和質(zhì)量酌情給分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012年浙江省高二第一學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題9分)已知矩形的兩條對角線相交于點,邊所在直線的方程為:,點邊所在直線上.

(1)求矩形外接圓的方程;

(2)求矩形外接圓中,過點的最短弦所在的直線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省杭州市高二上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本小題滿分9分)已知圓C:內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B兩點.

(Ⅰ)當(dāng)l經(jīng)過圓心C時,求直線l的方程;

(Ⅱ)當(dāng)弦AB被點P平分時,寫出直線l的方程;

(Ⅲ)當(dāng)直線l的傾斜角為45º時,求弦AB的長.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市高一下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本小題9分)如圖:已知圓和定點,由圓外一點向圓引切線,切點為,且滿足

(1)求實數(shù)間滿足的等量關(guān)系;(2)求線段長的最小值;(3)若以為圓心所作的圓與圓有公共點,試求半徑最小時圓的方程

 

 

查看答案和解析>>

同步練習(xí)冊答案