【題目】已知橢圓 + =1兩焦點(diǎn)分別為F1、F2 , P是橢圓在第一象限弧上一點(diǎn),并滿足 =1,過(guò)P作兩條直線PA、PB分別交橢圓于A、B兩點(diǎn).
(1)求P點(diǎn)坐標(biāo);
(2)若直線AB的斜率為 ,求△PAB面積的最大值.

【答案】
(1)解:由題意得:c= ,則F1(0, ),F(xiàn)2(0,﹣ ),設(shè)P(x0,y0

=(﹣x0 ﹣y0), =(﹣x0,﹣ ﹣y0),

=1,得:x02﹣2+y02=1x02+y02=3

又2x02+y02=4,x0,y0>0,

,即所求P(1,


(2)解:設(shè)AB方程為:y= +m,由 ,可得4x2+2 mx+m2﹣4=0,△=8m2﹣18m2+64>0,解得﹣2 ,設(shè)A(x1,y1),B(x2,y2),x1+x2= ,x1x2= ,

|AB|= = .P到AB的距離為d=

= = = 當(dāng)且僅當(dāng)m=±2∈(﹣2 )時(shí)取得最大值.

△PAB面積的最大值為:


【解析】(1)設(shè)出P的坐標(biāo),則可分別表示出向量,通過(guò)向量的數(shù)量積,求得x0和y0的關(guān)系,同時(shí)根據(jù)橢圓的方程,求得x0和y0即P的坐標(biāo).(2)設(shè)出直線的方程聯(lián)立橢圓方程,可求出AB的距離,得到直線AB的距離,利用三角形的面積公式,通過(guò)基本不等式求解最值即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y2=8x的焦點(diǎn)為F,準(zhǔn)線l與x軸的交點(diǎn)為M,過(guò)點(diǎn)M的直線l′與拋物線C的交點(diǎn)為P,Q,延長(zhǎng)PF交拋物線C于點(diǎn)A,延長(zhǎng)QF交拋物線C于點(diǎn)B,若 + =22,則直線l′的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由于霧霾日趨嚴(yán)重,政府號(hào)召市民乘公交出行.但公交車的數(shù)量太多會(huì)造成資源的浪費(fèi),太少又難以滿足乘客需求.為此,某市公交公司在某站臺(tái)的60名候車乘客中進(jìn)行隨機(jī)抽樣,共抽取10人進(jìn)行調(diào)查反饋,所選乘客情況如下表所示:

組別

候車時(shí)間(單位:min)

人數(shù)

[0,5)

1

[5,10)

5

[10,15)

3

[15,20)

1


(1)估計(jì)這60名乘客中候車時(shí)間少于10分鐘的人數(shù);
(2)現(xiàn)從這10人中隨機(jī)取3人,求至少有一人來(lái)自第二組的概率;
(3)現(xiàn)從這10人中隨機(jī)抽取3人進(jìn)行問(wèn)卷調(diào)查,設(shè)這3個(gè)人共來(lái)自X個(gè)組,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}滿足an=3an1+3n﹣1(n∈N* , n≥2), 已知a3=95.
(1)求a1 , a2;
(2)是否存在一個(gè)實(shí)數(shù)t,使得 ,且{bn}為等差數(shù)列?若存在,則求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+ )(x∈R,ω>0)的最小正周期為π,將y=f(x)的圖象向左平移|φ|個(gè)單位長(zhǎng)度,所得函數(shù)y=f(x)為偶函數(shù)時(shí),則φ的一個(gè)值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)的定義在(0,3)上的函數(shù),f(x)的圖象如圖所示,那么不等式f(x)cosx<0的解集是(
A.(0,1)∪(2,3)
B.
C.
D.(0,1)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C: ,(θ為參數(shù)),在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程2ρcosθ+ρsinθ﹣6=0.
(1)寫出曲線C的普通方程,直線l的直角坐標(biāo)方程;
(2)過(guò)曲線C上任意一點(diǎn)P作與l夾角為30°的直線,交l于點(diǎn)A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,已知3asinC=ccosA.
(Ⅰ)求sinA的值;
(Ⅱ)若B= ,△ABC的面積為9,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,且(a+c)2=b2+3ac.
(Ⅰ)求角B的大;
(Ⅱ)若b=2,且sinB+sin(C﹣A)=2sin2A,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案