精英家教網 > 高中數學 > 題目詳情
16、設x、y、z是空間不同的直線或不同的平面,且直線不在平面內,在下列幾個條件中,能保證“若x⊥z且y⊥z,則x∥y”為真命題的有
①、③、④

①x為直線,y、z是平面; ②x、y、z均為平面;  ③x、y為直線,z為平面; ④x、y為平面,z為直線;⑤x、y、z均為直線.
分析:依據定理和定義,采用逐一判定的方法解答本題,見解題過程.
解答:解:①中x⊥平面z,平面y⊥平面z,
∴x∥平面y或x?平面y.
又∵x?平面y,故x∥y成立;
②中若x,y,z均為平面,則x可與y相交,故②不成立;
③x⊥z,y⊥z,x,y為不同直線,故x∥y成立;
④z⊥x,z⊥y,z為直線,x,y為平面可得x∥y,④成立;
⑤x,y,z均為直線可異面垂直,故⑤不成立.
故答案為:①③④.
點評:本題考查空間直線與直線的位置關系,直線與平面的位置關系,平面與平面的位置關系,是中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

17、設x,y,z是空間的不同直線或不同平面,且直線不在平面內,下列條件中能保證“若x⊥z,且y⊥z,則x∥y”為真命題的是
①③④
(填所有正確條件的代號)
①x為直線,y,z為平面;②x,y,z為平面;③x,y為直線,z為平面;④x,y為平面,z為直線;⑤x,y,z為直線.

查看答案和解析>>

科目:高中數學 來源: 題型:

設x、y、z是空間的不同直線或不同平面,且直線不在平面內,下列條件中能保證“若x⊥z,且y⊥z,則x∥y”為真命題的是____________.(填上所有正確條件的代號)

①x為直線,y、z為平面  ②x、y、z為平面  ③x、y為直線,z為平面  ④x、y為平面,z為直線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設x、y、z是空間不同的直線或不同的平面,且直線不在平面內,在下列幾個條件中,能保證“若x⊥z且y⊥z,則xy”為真命題的有______.
①x為直線,y、z是平面; ②x、y、z均為平面;  ③x、y為直線,z為平面; ④x、y為平面,z為直線;⑤x、y、z均為直線.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年廣東省深圳市寶安區(qū)富源學校高二(上)《常用邏輯用語》單元測試(解析版) 題型:填空題

設x、y、z是空間不同的直線或不同的平面,且直線不在平面內,在下列幾個條件中,能保證“若x⊥z且y⊥z,則x∥y”為真命題的有   
①x為直線,y、z是平面; ②x、y、z均為平面;  ③x、y為直線,z為平面; ④x、y為平面,z為直線;⑤x、y、z均為直線.

查看答案和解析>>

同步練習冊答案