【題目】已知函數(shù),若在處取極大值,且極大值為7,在處取極小值.
(1)求a,b,c的值;
(2)求函數(shù)在[0, 4]上的最小值.
【答案】(1);(2)
【解析】
(1)利用極值點(diǎn)處的導(dǎo)數(shù)值為0,及極值可求a,b,c;
(2)先求出[0, 4]上的極值,再求出端點(diǎn)值,比較可得.
(1)∵
而x=-1和x=3是極值點(diǎn)
所以,解之得:a=-3,b=-9
又f(-1)=-1+a-b+c=-1-3+9+c=7,故得c=2
∴a=-3,b=-9,c=2 經(jīng)檢驗(yàn)知符合題意.
(2)由(1)可知
∴
令f′(x)>0,解得:x>3或x<-1
令f′(x)<0,解得:-1<x<3
∴函數(shù)f(x)在[0,3]遞減,在[3,4]遞增,
∴f(x)最小值=f(3)=-25
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點(diǎn),在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,對唐三彩的復(fù)制和仿制工藝,至今也有百余年的歷史,某陶瓷廠在生產(chǎn)過程中,對仿制100件工藝品測得其重量(單位:) 數(shù)據(jù),將數(shù)據(jù)分組如下表:
(1)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如區(qū)間的中點(diǎn)值是2.25)作為代表.據(jù)此,估計(jì)這100個(gè)數(shù)據(jù)的平均值;
(2)根據(jù)樣本數(shù)據(jù),以頻率作為槪率,若該陶瓷廠生產(chǎn)這樣的工藝品5000件,試估計(jì)重量落在中的件數(shù);
(3)從第一組和第六組6件工藝品中隨機(jī)抽取2個(gè)工藝品,求一個(gè)來自第一組,一個(gè)來自第六組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,分別是橢圓的左、右頂點(diǎn)(如圖所示),點(diǎn)在橢圓的長軸上運(yùn)動(dòng),且.設(shè)圓是以點(diǎn)為圓心,為半徑的圓.
(1)若,圓和橢圓在第一象限的交點(diǎn)坐標(biāo)為,求橢圓的方程;
(2)若橢圓的離心率為,過點(diǎn)作互相垂直的兩條直線,交橢圓于P,Q兩點(diǎn),若直線PQ過點(diǎn)M,求m的值(用含的代數(shù)式表示);
(3)當(dāng)圓與橢圓有且僅有點(diǎn)一個(gè)交點(diǎn)時(shí),求的運(yùn)動(dòng)范圍(用含的代數(shù)式表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為平行四邊形, , ,且底面.
(1)證明:平面平面;
(2)若為的中點(diǎn),且,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是
(1)命題“,”的否定是“,”;
(2)l為直線,,為兩個(gè)不同的平面,若,,則;
(3)給定命題p,q,若“為真命題”,則是假命題;
(4)“”是“”的充分不必要條件.
A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選出了三個(gè)科目作為選考科目.若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了了解高一年級420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:
(Ⅰ)試估計(jì)該學(xué)校高一年級確定選考生物的學(xué)生有多少人?
(Ⅱ)寫出選考方案確定的男生中選擇“物理、化學(xué)和地理”的人數(shù).(直接寫出結(jié)果)
(Ⅲ)從選考方案確定的男生中任選2名,試求出這2名學(xué)生選考科目完全相同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;
(2)當(dāng)時(shí),
① 若對于任意,恒有,求的取值范圍;
② 若,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(e為自然對數(shù)的底數(shù))
(1)求的最小值;
(2)若對于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),證明:;
(3)求證:對任意的,都有:,(其中為自然對數(shù)的底數(shù))。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com