橢圓的離心率為 (   )
A.B.C.D.
A

試題分析:根據(jù)題意,由于,可知a=2,b=1,那么可知,故可知結(jié)論為,選A.
點評:主要是考查了橢圓的幾何性質(zhì)的運用,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的長軸兩端點分別為是橢圓上的動點,以為一邊在軸下方作矩形,使于點,于點

(Ⅰ)如圖(1),若,且為橢圓上頂點時,的面積為12,點到直線的距離為,求橢圓的方程;
(Ⅱ)如圖(2),若,試證明:成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定圓的圓心為,動圓過點,且和圓相切,動圓的圓心的軌跡記為
(Ⅰ)求曲線的方程;
(Ⅱ)若點為曲線上一點,試探究直線:與曲線是否存在交點? 若存在,求出交點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的左、右焦點分別是,離心率為,過且垂直于軸的直線被橢圓截得的線段長為。
(Ⅰ)求橢圓的方程;
(Ⅱ)點是橢圓上除長軸端點外的任一點,連接,設(shè)的角平分線的長軸于點,求的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,過點作斜率為的直線,使與橢圓有且只有一個公共點,設(shè)直線的斜率分別為。若,試證明為定值,并求出這個定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點在圓上,直線交橢圓于兩點.
(1)求橢圓的方程;
(2)若(為坐標(biāo)原點),求的值;
(3)設(shè)點關(guān)于軸的對稱點為不重合),且直線軸交于點,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點是直線被橢圓所截得的線段中點,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為橢圓的左右頂點,在長軸上隨機任取點,過作垂直于軸的直線交橢圓于點,則使的概率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點分別為,
上頂點為,在軸負(fù)半軸上有一點,滿足,且

(Ⅰ)求橢圓的離心率;
(Ⅱ)是過三點的圓上的點,到直線的最大距離等于橢圓長軸的長,求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于兩點,線段的中垂線與軸相交于點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上一動點P到兩焦點距離之和為(    )
A.10B.8C.6D.不確定

查看答案和解析>>

同步練習(xí)冊答案