(本小題滿分12分)已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若關(guān)于的方程在區(qū)間上有兩個不同的實數(shù)根,求實數(shù)的取值范圍.

(Ⅰ),(Ⅱ)

解析試題分析:(Ⅰ)先將函數(shù)化簡,化簡時先用2倍角公式降冪,在將角統(tǒng)一,最后用化一公式化簡成的形式。再將代入正弦增區(qū)間公式即可。(Ⅱ)由(Ⅰ)知,所以在區(qū)間上有兩個不同的實數(shù)根等價于的圖像有兩個交點(diǎn),利用數(shù)形結(jié)合即可解決此題。
試題解析:(Ⅰ)
      
      
解得      
      
所以的遞增區(qū)間是:      
(Ⅱ)因為,所以

“關(guān)于的方程內(nèi)有兩個不同的實數(shù)根”等價于“函數(shù)的圖象有兩個不同的交點(diǎn)”.      
在同一直角坐標(biāo)系中作出函數(shù),的圖象如下:
      
由圖象可知:要使“函數(shù)的圖象有兩個不
同的交點(diǎn)”,必有,即
因此的取值范圍是.      
考點(diǎn):三角函數(shù)的單調(diào)性和圖像

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,且是第一象限角.
(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.
(Ⅰ)求的值;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)在銳角三角形中,若,,求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)(其中)的圖象如圖所示,把函數(shù)的圖像向右平移個單位,再向下平移1個單位,得到函數(shù)的圖像.

(1)若直線與函數(shù)圖像在時有兩個公共點(diǎn),其橫坐標(biāo)分別為,求的值;
(2)已知內(nèi)角的對邊分別為,且.若向量共線,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(Ⅰ)求的單調(diào)增區(qū)間;(Ⅱ)當(dāng)時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.求:
(1)函數(shù)的最小值及取得最小值的自變量的集合;
(2)函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為坐標(biāo)原點(diǎn),,.
(Ⅰ)若的定義域為,求的單調(diào)遞增區(qū)間;
(Ⅱ)若的定義域為,值域為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)向量.
⑴若,求的值;
⑵設(shè)函數(shù),求的最大值.

查看答案和解析>>

同步練習(xí)冊答案