設(shè),,計(jì)算可知 f(1)g(3)+g(1)f(3)-g(4)=0,f(3)g(2)+g(3)f(2)-g(5)=0,并由此概括出關(guān)于函數(shù)f(x)和g(x)的一個(gè)等式,使上面的兩個(gè)等式是你寫(xiě)出的等式的特例,這個(gè)等式是   
【答案】分析:由已知中函數(shù)的解析式及f(1)g(3)+g(1)f(3)-g(4)=0,f(3)g(2)+g(3)f(2)-g(5)=0,分析兩個(gè)式子中自變量之間的關(guān)系,歸納推理可得答案.
解答:解:∵,
且f(1)g(3)+g(1)f(3)-g(4)=0,
f(3)g(2)+g(3)f(2)-g(5)=0,

歸納可得:
f(a)g(b)+f(b)g(a)-g(a+b)=0
故答案為:f(a)g(b)+f(b)g(a)-g(a+b)=0
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是歸納推理,其中根據(jù)已知分析出等式中變量之間的關(guān)系規(guī)律是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
ex+e-x
2
,g(x)=
ex-e-x
2
,計(jì)算可知 f(1)g(3)+g(1)f(3)-g(4)=0,f(3)g(2)+g(3)f(2)-g(5)=0,并由此概括出關(guān)于函數(shù)f(x)和g(x)的一個(gè)等式,使上面的兩個(gè)等式是你寫(xiě)出的等式的特例,這個(gè)等式是
f(a)g(b)+f(b)g(a)-g(a+b)=0
f(a)g(b)+f(b)g(a)-g(a+b)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省衡陽(yáng)八中高三第三次質(zhì)量檢測(cè)數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè),計(jì)算可知 f(1)g(3)+g(1)f(3)-g(4)=0,f(3)g(2)+g(3)f(2)-g(5)=0,并由此概括出關(guān)于函數(shù)f(x)和g(x)的一個(gè)等式,使上面的兩個(gè)等式是你寫(xiě)出的等式的特例,這個(gè)等式是   

查看答案和解析>>

同步練習(xí)冊(cè)答案