(本題滿分12分) 如圖,有一塊矩形空地,要在這塊空地上辟一個內接四邊形為綠地,使其四個頂點分別落在矩形的四條邊上,已知AB=>2),BC=2,且AE=AH=CF=CG,設AE=,綠地面積為.

(1)寫出關于的函數(shù)關系式,并指出這個函數(shù)的定義域;
(2)當AE為何值時,綠地面積最大?  (10分) 

(1)y=-2x2+(+2)x,(0<x≤2) ;
(2)當<6時,AE=時,綠地面積取最大值
≥6時,AE=2時,綠地面積取最大值2-4。

解析試題分析:(1)先求得四邊形ABCD,△AHE的面積,再分割法求得四邊形EFGH的面積,即建立y關于x的函數(shù)關系式;
(2)由(1)知y是關于x的二次函數(shù),用二次函數(shù)求最值的方法求解.
解:(1)SΔAEH=SΔCFGx2, SΔBEF=SΔDGH-x)(2-x)
∴y=SABCD-2SΔAEH-2SΔBEF=2-x2-(-x)(2-x)=-2x2+(+2)x
∴y=-2x2+(+2)x,(0<x≤2)    (4分)
(2)當,即<6時,則x=時,y取最大值
≥2,即≥6時,y=-2x2+(+2)x,在0,2]上是增函數(shù),
則x=2時,y取最大值2-4
綜上所述:當<6時,AE=時,綠地面積取最大值
≥6時,AE=2時,綠地面積取最大值2-4。
考點:本試題主要考查了實際問題中的建模和解模能力,注意二次函數(shù)求最值的方法.
點評:解決該試題的關鍵是運用間接法,分割的思想來得到四邊形EFGH的面積,從而建立關于x的函數(shù)關系式,運用該函數(shù)的思想求解最值。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
定義在上的奇函數(shù),已知當時,
(1)寫出上的解析式
(2)求上的最大值
(3)若上的增函數(shù),求實數(shù)的范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知函數(shù)
(Ⅰ)當時,求函數(shù)的最小值;
(Ⅱ)若對任意,恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知:函數(shù)y=f (x)的定義域為R,且對于任意的a,b∈R,都有f (a+b)=f (a)+f (b),且當x>0時,f (x)<0恒成立.
證明:(1)函數(shù)y=f (x)是R上的減函數(shù).
(2)函數(shù)y=f (x)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分15分)已知在定義域上是奇函數(shù),且在上是減函數(shù),圖像如圖所示.
(1)化簡:;
(2)畫出函數(shù)上的圖像;
(3)證明:上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)=ax2+bx+c的圖象過原點(-1,0),是否存在常數(shù)a、b、c,使不等式x≤f(x) ≤對一切實數(shù)x均成立?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)已知).
(1)判斷函數(shù)的奇偶性,并證明;
(2)若,用單調性定義證明函數(shù)在區(qū)間上單調遞減;
(3)是否存在實數(shù),使得的定義域為時,值域為
,若存在,求出實數(shù)的取值范圍;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)經(jīng)市場調查,某種商品在過去50天的銷售量和價格均為銷售時間t(天)的函數(shù),已知前30天價格為,后20天價格為f(t)="45" (31£ t £50, tÎN),且銷售量近似地滿足g(t)=" -2t+200" (1£t£50, tÎN).
(I)寫出該種商品的日銷售額S與時間t的函數(shù)關系式;
(II)求日銷售額S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)設定義域都為的兩個函數(shù)的解析式分別為
(1)求函數(shù)的值域;
(2)求函數(shù)的值域.

查看答案和解析>>

同步練習冊答案