精英家教網 > 高中數學 > 題目詳情
如圖,AB是圓O的直徑,PA垂直圓O所在的平面,C是圓O上的點.

(1)求證:BC⊥平面PAC
(2)設QPA的中點,G為△AOC的重心,求證:QG∥平面PBC.
見解析
(1)由AB是圓O的直徑,得ACBC
PA⊥平面ABC,BC?平面ABC,得PABC.
PAACA,PA?平面PAC,AC?平面PAC,
所以BC⊥平面PAC.
(2)連接OG并延長交ACM,連接QM,QO,由G為△AOC的重心,得MAC中點.

QPA中點,得QMPC,
OAB中點,得OMBC.
因為QMMOM,QM?平面QMO
MO?平面QMO,BCPCC
BC?平面PBC,PC?平面PBC.
所以平面QMO∥平面PBC.
因為QG?平面QMO,所以QG∥平面PBC.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,在矩形中,點為邊上的點,點為邊的中點,,現將沿邊折至位置,且平面平面.

(1) 求證:平面平面;
(2) 求二面角的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知α,β,γ是三個不同的平面,命題“α∥β,且α⊥γ⇒β⊥γ”是真命題,如果把α,β,γ中的任意兩個換成直線,另一個保持不變,在所得的所有新命題中,真命題有(  )
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設m,n是兩條不同的直線,α,β是兩個不同的平面,下列為真命題的是(  )
A.若m⊥α,n⊥β,m⊥n,則α⊥β
B.若α⊥β,α∩β=m,m⊥n,則n⊥β
C.若α⊥β,m⊥α,n∥β,則m⊥n
D.若α∥β,m⊥α,n∥β,則m⊥n

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知α,β是兩個不同的平面,下列四個條件:
①存在一條直線a,a⊥α,a⊥β;
②存在一個平面γ,γ⊥α,γ⊥β;
③存在兩條平行直線a,b,a?α,b?β,a∥β,b∥α;
④存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α.
其中是平面α∥平面β的充分條件的為________(填上所有符號要求的序號).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

給出四個命題:
①平行于同一平面的兩個不重合的平面平行;
②平行于同一直線的兩個不重合的平面平行;
③垂直于同一平面的兩個不重合的平面平行;
④垂直于同一直線的兩個不重合的平面平行;
其中真命題的序號是________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,在正方體ABCD-A1B1C1D1中,點P在直線BC1上運動時,有下列三個命題:①三棱錐AD1PC的體積不變;②直線AP與平面ACD1所成角的大小不變;③二面角P-AD1-C的大小不變.其中真命題的序號是________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖所示,在四邊形A-BCD中,ADBC,ADAB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構成三棱錐A­BCD,則在三棱錐ABCD中,下列命題正確的是(  ).
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知一個平面與正方體的12條棱的夾角均為,那么        .

查看答案和解析>>

同步練習冊答案