已知函數(shù)f(x)=(k為常數(shù),e=2.718 28…是自然對數(shù)的底數(shù)),曲線yf(x)在點(1,f(1))處的切線與x軸平行.

(1)求k的值;

(2)求f(x)的單調(diào)區(qū)間;

(3)設g(x)=(x2x)f′(x),其中f′(x)為f(x)的導函數(shù),證明:對任意x>0,g(x)<1+e-2.

解析 (1)由f(x)=,

f′(x)=x∈(0,+∞)

由于曲線yf(x)在(1,f(1))處的切線與x軸平行,

所以f′(1)=0,因此k=1.

(2)由(1)得f′(x)=(1-xxlnx),x∈(0,+∞).

h(x)=1-xxlnx,x∈(0,+∞),

x∈(0,1)時,h(x)>0;當x∈(1,+∞)時,h(x)<0.

又ex>0,所以當x∈(0,1)時,f′(x)>0;

x∈(1,+∞)時,f′(x)<0.

因此f(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞).

(3)因為g(x)=(x2x)f′(x),

所以g(x)=(1-xxlnx),x∈(0,+∞).

因此,對任意x>0,

g(x)<1+e-2等價于1-xxlnx<(1+e-2).

由(2)中h(x)=1-xxlnxx∈(0,+∞),

所以h′(x)=-lnx-2=-(lnx-lne-2),x∈(0,+∞).

因此,當x∈(0,e-2)時,h′(x)>0,h(x)單調(diào)遞增;

當x∈(e-2,+∞)時,h′(x)<0,h(x)單調(diào)遞減.

所以h(x)的最大值為h(e-2)=1+e-2.

故1-x-xlnx≤1+e-2.

設φ(x)=ex-(x+1).

因為φ′(x)=ex-1=exe0

所以當x∈(0,+∞)時,φ′(x)>0,φ(x)單調(diào)遞增,

φ(x)>φ(0)=0.

故當x∈(0,+∞)時,φ(x)=ex-(x+1)>0,

>1.

所以1-x-xlnx≤1+e-2<(1+e-2).

因此,對任意x>0,g(x)<1+e-2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2011屆南京市金陵中學高三第四次模擬考試數(shù)學試題 題型:解答題

(本小題滿分16分)已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a為正數(shù)).
(1) 若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2) 求f(x)的單調(diào)區(qū)間;
(3) 設g(x)=x2-2x,若對任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省杭州市高三上學期開學考試數(shù)學卷 題型:選擇題

已知函數(shù)f(x)=4x2mx+5在區(qū)間[-2,+∞)上是增函數(shù),則f(1)的范圍是(  )

A.f(1)≥25         B.f(1)=25     C.f(1)≤25         D.f(1)>25

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖南省高三第三次月考文科數(shù)學卷 題型:選擇題

已知函數(shù)f(x)=若f(a)=,則a=                 (  )

A.-1                      B.

C.-1或                 D.1或-

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省天門市高三天5月模擬文科數(shù)學試題 題型:填空題

  已知函數(shù)f(x)=ax2+bx+c(a≠0),且f(x)=x無實根,下列命題中:

    (1)方程f [f (x)]=x一定無實根;

    (2)若a>0,則不等式f [f (x)]>x對一切實數(shù)x都成立;

    (3)若a<0,則必存在實數(shù)x0,使f [f (x0)]>x0;

    (4)若a+b+c=0,則不等式f [f (x)]<x對一切x都成立;

    正確的序號有          .              

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆江西省南昌市高三第一次模擬測試卷理科數(shù)學試卷 題型:選擇題

已知函數(shù)f(x)=|lg(x-1)|-()x有兩個零點x1,x2,則有

A.x1x2<1    B.x1x2<x1x2

C.x1x2x1x2    D.x1x2>x1x2

 

 

查看答案和解析>>

同步練習冊答案