已知函數(shù)f(x)=(k為常數(shù),e=2.718 28…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與x軸平行.
(1)求k的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)設g(x)=(x2+x)f′(x),其中f′(x)為f(x)的導函數(shù),證明:對任意x>0,g(x)<1+e-2.
解析 (1)由f(x)=,
得f′(x)=,x∈(0,+∞).
由于曲線y=f(x)在(1,f(1))處的切線與x軸平行,
所以f′(1)=0,因此k=1.
(2)由(1)得f′(x)=(1-x-xlnx),x∈(0,+∞).
令h(x)=1-x-xlnx,x∈(0,+∞),
當x∈(0,1)時,h(x)>0;當x∈(1,+∞)時,h(x)<0.
又ex>0,所以當x∈(0,1)時,f′(x)>0;
當x∈(1,+∞)時,f′(x)<0.
因此f(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞).
(3)因為g(x)=(x2+x)f′(x),
所以g(x)=(1-x-xlnx),x∈(0,+∞).
因此,對任意x>0,
g(x)<1+e-2等價于1-x-xlnx<(1+e-2).
由(2)中h(x)=1-x-xlnx,x∈(0,+∞),
所以h′(x)=-lnx-2=-(lnx-lne-2),x∈(0,+∞).
因此,當x∈(0,e-2)時,h′(x)>0,h(x)單調(diào)遞增;
當x∈(e-2,+∞)時,h′(x)<0,h(x)單調(diào)遞減.
所以h(x)的最大值為h(e-2)=1+e-2.
故1-x-xlnx≤1+e-2.
設φ(x)=ex-(x+1).
因為φ′(x)=ex-1=ex-e0,
所以當x∈(0,+∞)時,φ′(x)>0,φ(x)單調(diào)遞增,
φ(x)>φ(0)=0.
故當x∈(0,+∞)時,φ(x)=ex-(x+1)>0,
即>1.
所以1-x-xlnx≤1+e-2<(1+e-2).
因此,對任意x>0,g(x)<1+e-2.
科目:高中數(shù)學 來源:2011屆南京市金陵中學高三第四次模擬考試數(shù)學試題 題型:解答題
(本小題滿分16分)已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a為正數(shù)).
(1) 若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2) 求f(x)的單調(diào)區(qū)間;
(3) 設g(x)=x2-2x,若對任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年浙江省杭州市高三上學期開學考試數(shù)學卷 題型:選擇題
已知函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞)上是增函數(shù),則f(1)的范圍是( )
A.f(1)≥25 B.f(1)=25 C.f(1)≤25 D.f(1)>25
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年湖南省高三第三次月考文科數(shù)學卷 題型:選擇題
已知函數(shù)f(x)=若f(a)=,則a= ( )
A.-1 B.
C.-1或 D.1或-
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年湖北省天門市高三天5月模擬文科數(shù)學試題 題型:填空題
已知函數(shù)f(x)=ax2+bx+c(a≠0),且f(x)=x無實根,下列命題中:
(1)方程f [f (x)]=x一定無實根;
(2)若a>0,則不等式f [f (x)]>x對一切實數(shù)x都成立;
(3)若a<0,則必存在實數(shù)x0,使f [f (x0)]>x0;
(4)若a+b+c=0,則不等式f [f (x)]<x對一切x都成立;
正確的序號有 .
查看答案和解析>>
科目:高中數(shù)學 來源:2012屆江西省南昌市高三第一次模擬測試卷理科數(shù)學試卷 題型:選擇題
已知函數(shù)f(x)=|lg(x-1)|-()x有兩個零點x1,x2,則有
A.x1x2<1 B.x1x2<x1+x2
C.x1x2=x1+x2 D.x1x2>x1+x2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com