已知是正方形,⊥面,且,是側(cè)棱的中點.

(1)求證∥平面;
(2)求證平面平面;
(3)求直線與底面所成的角的正切值.

(1)關(guān)鍵是證明(2)先證明(3)

解析試題分析:本題(1)問,由中位線得,再由平行線的傳遞性得,然后結(jié)合定理在說明清楚即可;
第(2)問,關(guān)鍵是證明,再結(jié)合,就可證明
平面平面;
第(3)問,由于,則為直線與平面所成角,結(jié)合三角函數(shù)可求出其正切值。
解:(1) 
, 又

(2)
,又
,
(3)
即直線與平面所成角


考點:直線與平面所成的角;直線與平面平行的判定;平面與平面垂直的判定.
點評:本題考查線面平行,考查面面垂直,考查線面角,考查學生分析解決問題的能力,掌握線面平行,面面垂直的判定方法是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的幾何體中,是邊長為2的正三角形. 若平面,平面平面, ,且

(1)求證://平面;
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形是正方形,,,

(Ⅰ)求證:平面平面;
(Ⅱ)若所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直三棱柱的側(cè)棱長為3,,且,、分別是棱上的動點,且
(1)證明:無論在何處,總有;
(2)當三棱柱.的體積取得最大值時,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,邊長為2的正方形中,

(1)點的中點,點的中點,將分別沿折起,使兩點重合于點。求證:
(2)當時,求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐F-ABCD的底面ABCD是菱形,其對角線AC=2,BD=,AE、CF都與平面ABCD垂直,AE=1,CF=2.

(I)求二面角B-AF-D的大。
(II)求四棱錐E-ABCD與四棱錐F-ABCD公共部分的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直角梯形中,,,,為線段的中點,將沿折起,使平面⊥平面,得到幾何體.

(1)若分別為線段,的中點,求證:∥平面;
(2)求證:⊥平面
(3)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD, .

(Ⅰ) 證明: A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1與平面BB1D1D的夾角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖平面SAC⊥平面ACB,ΔSAC是邊長為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。

查看答案和解析>>

同步練習冊答案