某車間小組共需配置兩種型號(hào)的機(jī)器型機(jī)器需人操作每天耗電能生產(chǎn)出價(jià)值萬(wàn)元的產(chǎn)品型機(jī)器需人操作每天耗電能生產(chǎn)出價(jià)值萬(wàn)元的產(chǎn)品現(xiàn)每天供應(yīng)車間的電能不多于問(wèn)該車間小組應(yīng)如何配置兩種型號(hào)的機(jī)器才能使每天的產(chǎn)值最大最大值是多少
當(dāng)配給車間小組型機(jī)器臺(tái)型機(jī)器臺(tái)時(shí)每天能得到最大產(chǎn)值萬(wàn)元
本試題主要是考查了線性規(guī)劃的最優(yōu)解的運(yùn)用。
先根據(jù)題意設(shè)需分配給車間小組型、型兩種機(jī)器分別為臺(tái)、臺(tái)則得到線性約束條件,然后作圖,平移法得到最值。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中, 點(diǎn)集A="{(x," y)| }, 點(diǎn)集B="{(x," y)| , 則點(diǎn)集M="{(x," y)|x=x+x, y=y+y, (x, y)A, (x, y)B}所表示的區(qū)域的面積為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題14分)某人有樓房一幢,室內(nèi)面積共計(jì)180m2,擬分割成兩類房間作為旅游客房,大房間每間面積為18m2,可住游客5名,每名游客每天住宿費(fèi)40元;小房間每間面積為15m2,可以住游客3名,每名游客每天住宿費(fèi)50元;裝修大房間每間需要1000元,裝修小房間每間需要600元.如果他只能籌款8000元用于裝修,且游客能住滿客房,他應(yīng)隔出大房間和小房間各多少間,每天能獲得最大的房租收益?(注:設(shè)分割大房間為x間,小房間為y間,每天的房租收益為z元)
(1)寫出x,y所滿足的線性約束條件;  
(2)寫出目標(biāo)函數(shù)的表達(dá)式;
(3)求x,y各為多少時(shí),每天能獲得最大的房租收益?每天能獲得最大的房租收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

電視臺(tái)應(yīng)某企業(yè)之約播放兩套連續(xù)劇.其中,連續(xù)劇甲每次播放時(shí)間為80 min,其中廣告時(shí)間為1 min,收視觀眾為60萬(wàn);連續(xù)劇乙每次播放時(shí)間為40 min,其中廣告時(shí)間為1 min,收視觀眾為20萬(wàn).已知該企業(yè)與電視臺(tái)達(dá)成協(xié)議,要求電視臺(tái)每周至少播放6 min廣告,而電視臺(tái)每周只能為該企業(yè)提供不多于320 min的節(jié)目時(shí)間.則該電視臺(tái)通過(guò)這兩套連續(xù)劇所獲得的收視觀眾最多為
A.220萬(wàn)B.200萬(wàn)C.180萬(wàn)D.160萬(wàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)x,y滿足約束條件,若目標(biāo)函數(shù)的最大值為12,則的最小值為(   )           
A.B.C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)滿足約束條件若目標(biāo)函數(shù)的最
大值為的最小值為(   )
                                    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知x,y滿足約束條件,則目標(biāo)函數(shù)的最大值為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)中的變量滿足條件,則的最大值是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知變量滿足約束條件,則的最小值為(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案