【題目】某校從參加高一年級期中考試的學(xué)生中抽出60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[40,50),[50,60)…,[80,90),[90,100],然后畫出如圖所示部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(1)求第四小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)估計(jì)這次考試的及格率(60分及60分以上為及格)和平均分;
(3)把從[80,90)分?jǐn)?shù)段選取的最高分的兩人組成B組,[90,100]分?jǐn)?shù)段的學(xué)生組成C組,現(xiàn)從B,C兩組中選兩人參加科普知識競賽,求這兩個(gè)學(xué)生都來自C組的概率.

【答案】
(1)解:分?jǐn)?shù)在[70,80)內(nèi)的頻率為:

1﹣(0.05+0.1+0.15+0.15+0.25)=0.30

= =0.03,

補(bǔ)全后的直方圖如下:


(2)解:由題意60分以上的各組頻率和為:

(0.015+0.03+0.025+0.005)×10=0.75,

故這次考試的及格率約為75%,

由45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,

得本次考試中的平均分約為71:


(3)解:由已知可得C組共有學(xué)生60×10×0.005=3人,

則從B,C兩組中選兩人參加科普知識競賽共有 =10種不同情況,

其中這兩個(gè)學(xué)生都來自C組有 =3種不同情況,

∴這兩個(gè)學(xué)生都來自C組的概率P=


【解析】(1)頻率分布直方圖中,小矩形的面積等于這一組的頻率,而頻率的和等于1,可求出分?jǐn)?shù)在[70,80)內(nèi)的頻率,即可求出矩形的高,補(bǔ)全這個(gè)頻率分布直方圖.(2)累加60分及60分以上的各組頻率可得到這次考試的及格率,再在同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表,將中點(diǎn)值與每一組的頻率相差再求出它們的和即可求出本次考試的平均分.(3)分別求出從B,C兩組中選兩人的基本事件總數(shù)和這兩個(gè)學(xué)生都來自C組的基本事件個(gè)數(shù),代入古典概型概率公式,可得答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的, , 四項(xiàng)參賽作品,只評一項(xiàng)一等獎(jiǎng),在評獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品獲獎(jiǎng)情況預(yù)測如下:

甲說:“作品獲得一等獎(jiǎng)”

乙說:“作品獲得一等獎(jiǎng)”

丙說:“, 兩項(xiàng)作品未獲得一等獎(jiǎng)”

丁說:“作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中, , , , , 分別在上, ,現(xiàn)將四邊形沿折起,使.

(1)若,在折疊后的線段上是否存在一點(diǎn),使得平面?若存在,求出的值;若不存在,說明理由;

(2)求三棱錐的體積的最大值,并求出此時(shí)點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(x、y)滿足
(1)若x∈{0,1,2,3,4,5},y∈{0,1,2,3,4},則求y≥x的概率.
(2)若x∈[0,5],y∈[0,4],則求x>y的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中, 底面,底面是直角梯形, , , ,點(diǎn)上,且

(Ⅰ)已知點(diǎn)上,且,求證:平面平面

(Ⅱ)當(dāng)二面角的余弦值為多少時(shí),直線與平面所成的角為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是圓外一點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為,記四邊形的面積為,當(dāng)在圓上運(yùn)動(dòng)時(shí), 的取值范圍為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知E、F分別在正方體ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1 , 則面AEF與面ABC所成的二面角的正切值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,底面是邊長為的菱形, ,四邊形是矩形,平面平面, , 的中點(diǎn).

(1)求證: 平面

(2)求直線與平面所成角的正弦值;

(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線與圓交于MN兩點(diǎn),且M、N關(guān)于直線對稱.

(1)求m,k的值;

(2)若直線與圓CP,Q兩點(diǎn),是否存在實(shí)數(shù)a使得OPOQ,如果存在,求出a的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案