平面內(nèi)與兩定點(diǎn)連線的斜率之積等于常數(shù)(的點(diǎn)的軌跡,連同兩點(diǎn)所成的曲線為C.
(Ⅰ)求曲線C的方程,并討論C的形狀;
(II)設(shè),,對(duì)應(yīng)的曲線是,已知?jiǎng)又本與橢圓交于、兩不同點(diǎn),且,其中O為坐標(biāo)原點(diǎn),探究 是否為定值,寫(xiě)出解答過(guò)程。
解:(Ⅰ)設(shè)動(dòng)點(diǎn)為M,其坐標(biāo)為,
當(dāng)時(shí),由條件可得
即,又的坐標(biāo)滿足
故依題意,曲線C的方程為
當(dāng)曲線C的方程為是焦點(diǎn)在y軸上的橢圓;
當(dāng)時(shí),曲線C的方程為,C是圓心在原點(diǎn)的圓;
當(dāng)時(shí),曲線C的方程為,C是焦點(diǎn)在x軸上的橢圓; ……6分
(Ⅱ)解::
當(dāng)直線的斜率不存在時(shí),P,Q兩點(diǎn)關(guān)于x軸對(duì)稱,
所以因?yàn)?img width=59 height=24 src='http://thumb.zyjl.cn/pic1/2014/01/06/02/2014010602132892905647.files/image221.gif'>在橢圓上,因此 ①
又因?yàn)?sub>所以 ②
由①、②得此時(shí)
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為
將其代入,得,
其中即 (*)
又,
所以
因?yàn)辄c(diǎn)O到直線的距離為所以
又整理得且符合(*)式,
此時(shí)
綜上所述結(jié)論成立 ……13分
(Ⅱ)解法2:
令P,Q
化簡(jiǎn)得
又P,Q在
則
代入得,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年海南省瓊海市高三下學(xué)期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
平面內(nèi)與兩定點(diǎn)連線的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上 兩點(diǎn),所成的曲線可以是圓,橢圓或雙曲線.
(Ⅰ)求曲線的方程,并討論的形狀與值的關(guān)系;
(Ⅱ)當(dāng)時(shí),對(duì)應(yīng)的曲線為;對(duì)給定的,對(duì)應(yīng)的曲線為,若曲線的斜率為的切線與曲線相交于兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年寧夏高三第六次月考理科數(shù)學(xué)試卷 題型:解答題
平面內(nèi)與兩定點(diǎn)連線的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上 兩點(diǎn),所成的曲線可以是圓,橢圓或雙曲線.
(I)求曲線的方程,并討論的形狀與值的關(guān)系.
(Ⅱ)當(dāng)時(shí),對(duì)應(yīng)的曲線為;對(duì)給定的,對(duì)應(yīng)的曲線為,若曲線的斜率為的切線與曲線相交于兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
平面內(nèi)與兩定點(diǎn)連線的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上 兩點(diǎn),所成的曲線可以是圓,橢圓或雙曲線.
(Ⅰ)求曲線的方程,并討論的形狀與值的關(guān)系;
(Ⅱ)當(dāng)時(shí),對(duì)應(yīng)的曲線為;對(duì)給定的,對(duì)應(yīng)的曲線為,若曲線的斜率為的切線與曲線相交于兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:寧夏銀川一中2011-2012學(xué)年高三第六次月考試題(數(shù)學(xué)理) 題型:解答題
平面內(nèi)與兩定點(diǎn)連線的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上 兩點(diǎn),所成的曲線可以是圓,橢圓或雙曲線.
(I)求曲線的方程,并討論的形狀與值的關(guān)系.
(Ⅱ)當(dāng)時(shí),對(duì)應(yīng)的曲線為;對(duì)給定的,對(duì)應(yīng)的曲線為,若曲線的斜率為的切線與曲線相交于兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求曲線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com