從正方體ABCD-A1B1C1D1的8個頂點中任意取4個不同的頂點,這4個頂點可能是:
(1)矩形的4個頂點;
(2)每個面都是等邊三角形的四面體的4個頂點;
(3)每個面都是直角三角形的四面體的4個頂點;
(4)有三個面是等腰直角三角形,有一個面是等邊三角形的四面體的4個頂點.
其中正確的結論有________個.
4
四邊形ABCD適合(1),四面體ACB1D1適合(2),DB1C1D1適合(3),DA1C1D1適合(4),因此正確的結論有4個
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在底面為直角梯形的四棱錐PABCD中,AD∥BC,PD⊥平面ABCD,AD=1,AB=,BC=4.

(1)求證:BD⊥PC;
(2)求直線AB與平面PDC所成的角;
(3)設點E在棱PC上,,若DE∥平面PAB,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在正三棱柱ABCA1B1C1中,點D是BC的中點,BC=BB1.
 
(1)若P是CC1上任一點,求證:AP不可能與平面BCC1B1垂直;
(2)試在棱CC1上找一點M,使MB⊥AB1.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥=AD,BE∥=FA,G、H分別為FA、FD的中點.
 
(1)證明:四邊形BCHG是平行四邊形.
(2)C、D、F、E四點是否共面?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在多面體ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,,是銳角,且平面ACEF⊥平面ABCD.

(1)求證:
(2)若直線DE與平面ACEF所成的角的正切值是,試求的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線l上有兩點與平面α的距離相等,則直線l與平面α的位置關系是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在梯形ABCD中,AB∥CD,AB平面α,CD平面α,則直線CD與平面α內的直線的位置關系可能是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知兩個不同的平面和兩條不重合的直線,則下列命題不正確的是 (    )
A.若B.若
C.若,,則D.若,,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若四面體ABCD的三組對棱分別相等,即AB=CD,AC=BD,AD=BC,則    (寫出所有正確結論的編號). 
①四面體ABCD每組對棱相互垂直;
②四面體ABCD每個面的面積相等;
③從四面體ABCD每個頂點出發(fā)的三條棱兩兩夾角之和大于90°而小于180°;
④連接四面體ABCD每組對棱中點的線段相互垂直平分;
⑤從四面體ABCD每個頂點出發(fā)的三條棱的長可作為一個三角形的三邊長.

查看答案和解析>>

同步練習冊答案