試求圓x2y2=1經(jīng)矩陣A對(duì)應(yīng)的變換后的曲線方程.

解:設(shè)P(x0,y0)為已知圓上的任意一點(diǎn),在矩陣對(duì)應(yīng)的變換下變?yōu)?i>P’(xy),

,即x=2x0,yy0,所以x0x,y0y

又因?yàn)辄c(diǎn)P在圓x2y2=1上,

所以y2=1,即圓x2y2=1,

經(jīng)矩陣A對(duì)應(yīng)的變換后的變?yōu)?sub>y2=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:江蘇省常州市2012屆高三教育學(xué)會(huì)學(xué)業(yè)水平監(jiān)測(cè)數(shù)學(xué)試題 題型:044

在平面直角坐標(biāo)系xOy中,已知圓x2+y2=1與x軸正半軸的交點(diǎn)為F,AB為該圓的一條弦,直線AB的方程為x=m.記以AB為直徑的圓為⊙C,記以點(diǎn)F為右焦點(diǎn)、短半軸長(zhǎng)為b(b>0,b為常數(shù))的橢圓為D.

(1)求⊙C和橢圓D的標(biāo)準(zhǔn)方程;

(2)當(dāng)b=1時(shí),求證:橢圓D上任意一點(diǎn)都不在⊙C的內(nèi)部;

(3)已知點(diǎn)M是橢圓D的長(zhǎng)軸上異于頂點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)M且與x軸不垂直的直線交橢圓D于P、Q兩點(diǎn)(點(diǎn)P在x軸上方),點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為N,設(shè)直線QN交x軸于點(diǎn)L,試判斷·是否為定值?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

       已知圓O:x2+y2=1,圓C:(x-4)2+(y-4)2=1,由兩圓外一點(diǎn)P(a,b)引兩圓切線PA、PB,切點(diǎn)分別為A、B,如圖,滿足|PA|=|PB|;

       (Ⅰ)將兩圓方程相減可得一直線方程l:x+y-4=0,該直線叫做這兩圓的“根軸”,試證點(diǎn)P落在根軸上;

       (Ⅱ)求切線長(zhǎng)|PA|的最小值;

(Ⅲ)給出定點(diǎn)M(0,2),設(shè)P、Q分別為直線l和圓O上動(dòng)點(diǎn),求|MP|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓Ox2y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(a,b)向圓O引切線PQ,切點(diǎn)為Q,|PQ|=|PA|成立,如圖.

(1)求a、b間關(guān)系;

(2)求|PQ|的最小值;

(3)以P為圓心作圓,使它與圓O有公共點(diǎn),試在其中求出半徑最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 已知圓Ox2y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(ab)向圓O引切線PQ,切點(diǎn)為Q,|PQ|=|PA|成立,如圖.

(1)求a、b間關(guān)系;

(2)求|PQ|的最小值;

(3)以P為圓心作圓,使它與圓O有公共點(diǎn),試在其中求出半徑最小的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案