某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.

(1)求ξ的分布及數(shù)學期望;

(2)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞)上單調遞增”為事件A,求事件A的概率.

思路分析: (1)寫出ξ的可能取值,利用相互獨立事件的概率公式求出P(ξ=k)(k=1,3),寫出ξ的分布列,求出Eξ.(2)利用二次函數(shù)的單調性求解.

解:(1)分別記“客人游覽甲景點”“客人游覽乙景點”“客人游覽丙景點”.

為事件A1,A2,A3.由已知A1,A2,A3相互獨立,P(A1)=0.4,P(A2)=0.5,P(A3)=0.6. 

客人游覽的景點數(shù)的可能取值為0,1,2,3.相應地,客人沒有游覽的景點數(shù)的可能取值為3,2,1,0,所以ξ的可能取值為1,3.

P(ξ=3)=P(A1·A2·A3)+P)=P(A1P(A2P(A3)+PPP)=2×0.4×0.5×0.6=0.24,

P(ξ=1)=1-0.24=0.76.

所以ξ的分布列為

ξ

1

3

P

0.76

0.24

Eξ=1×0.76+3×0.24=1.48.

(2)解法一:因為f(x)=(x-ξ)2+1-ξ2,

所以函數(shù)f(x)=x2-3ξx+1在區(qū)間[ξ,+∞)上單調遞增,

要使f(x)在[2,+∞)上單調遞增,當且僅當ξ≤2,即ξ≤.

從而P(A)=P(ξ≤)=P(ξ=1)=0.76.

解法二:ξ的可能取值為1,3.

當ξ=1時,函數(shù)f(x)=x2-3x+1在區(qū)間[2,+∞)上單調遞增,

當ξ=3時,函數(shù)f(x)=x2-9x+1在區(qū)間[2,+∞)上不單調遞增.

所以P(A)=P(ξ=1)=0.76.

    深化升華 本題主要考查離散型隨機變量分布列、數(shù)學期望和事件的概率等問題.一般解法是先由題意求出分布列,再由隨機變量的數(shù)學期望公式代入求解即可.這一知識點應是未來高考中的一個熱點.

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.
(Ⅰ)求ξ的分布及數(shù)學期望;
(Ⅱ)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞)上單調遞增”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某城市有甲、乙、丙3個旅游景點,一位客人游覽這3個景點的概率分別為0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.
(1)求ξ的分布;
(2)求ξ的數(shù)學期望及方差;
(3)記“函數(shù)f(x)=x2-2ξx+lnx是單調增函數(shù)”為事件A,求事件A的概率.
(可能用到的數(shù)據(jù):0.762≈0.58,0.482≈0.23,1.522≈2.31,0.242≈0.06)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寶雞模擬)某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響.
(1)求客人游覽2個景點的概率;
(2)設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值,求ξ的分布及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科做)某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.
(Ⅰ)求ξ的分布及數(shù)學期望;
(Ⅱ)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞)上單調遞增”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(05年湖南卷理)(14分)

       某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.

(Ⅰ)求ξ的分布及數(shù)學期望;

(Ⅱ)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞上單調遞增”為事件A,求事件A的概率.

查看答案和解析>>

同步練習冊答案