(2008•楊浦區(qū)二模)若函數(shù)f(x)=
x
x+2
的反函數(shù)是y=f-1(x),則f-1(
1
2
)
=
2
2
分析:欲求f-1
1
2
),根據(jù)原函數(shù)的反函數(shù)為f-1(x)知,只要求滿足于f(x)=
1
2
的x的值即可,故只要解方程
x
x+2
=
1
2
即得.
解答:解析:令f(x)=
1
2
,則x=f-1
1
2
),
解方程
x
x+2
=
1
2

得x=2,
f-1(
1
2
)
=2
故答案為:2.
點評:本題主要考查了反函數(shù),一般地,設函數(shù)y=f(x)(x∈A)的值域是C,根據(jù)這個函數(shù)中x,y 的關系,用y把x表示出,得到x=f(y).若對于y在C中的任何一個值,通過x=f(y),x在A中都有唯一的值和它對應,那么,x=f(y)就表示y是自變量,x是因變量y的函數(shù),這樣的函數(shù)x=f(y)(y∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù),記作y=f-1(x).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2008•楊浦區(qū)二模)若集合A={x|x2-2x-3≤0},B={x|x>a},且A∩B=φ,則實數(shù)a的取值范圍是
[3,+∞)
[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•楊浦區(qū)二模)(文)在平面直角坐標系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實數(shù))代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱曲線C1、C2關于原點“伸縮”,變換(x,y)→(λx,λy)稱為“伸縮變換”,λ稱為伸縮比.
(1)已知曲線C1的方程為
x2
9
-
y2
4
=1
,伸縮比λ=2,求C1關于原點“伸縮變換”后所得曲線C2的方程;

(2)已知拋物線C1:y2=2x,經(jīng)過伸縮變換后得拋物線C2:y2=32x,求伸縮比λ.
(3)射線l的方程y=
2
2
x(x≥0)
,如果橢圓C1
x2
16
+
y2
4
=1
經(jīng)“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點A、B,且|AB|=
2
,求橢圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•楊浦區(qū)二模)在極坐標系中,曲線ρ=4sin(θ-
π
3
)
關于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•楊浦區(qū)二模)若z1=1+i,z1
.
z2
=2
,則z2=
1+i
1+i

查看答案和解析>>

同步練習冊答案