【題目】某科技興趣小組對晝夜溫差的大小與小麥新品種發(fā)芽多少之間的關系進行了研究,記錄了2016年12月1日至12月5日五天的晝夜溫差與相應每天100顆種子的發(fā)芽得到了如下數(shù)據(jù):
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 9 | 11 | 10 | 12 | 13 |
發(fā)芽數(shù)(顆) | 21 | 34 | 26 | 36 | 40 |
現(xiàn)從這5組數(shù)據(jù)中任選兩組,用余下的三組數(shù)據(jù)求回歸直線方程,再對被選取的兩組數(shù)據(jù)進行檢驗.
(Ⅰ)求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天的概率;
(Ⅱ)若選取的是12月1日和12月5日的兩組數(shù)據(jù),請根據(jù)余下的三組數(shù)據(jù),求出與的線性回歸直線方程;
(Ⅲ)若由線性回歸直線方程得到的估計值與所選出的兩組實際數(shù)據(jù)的誤差均不超過兩顆,則認為得到的回歸直線方程是可靠的,試判斷(Ⅱ)中得到的線性回歸直線方程是否可靠.
附:在線性回歸方程中,.
【答案】(Ⅰ);(Ⅱ);(Ⅲ)線性回歸方程是可靠的.
【解析】(Ⅰ)根據(jù)題意,采用列舉法,列出5組數(shù)據(jù)任取兩組的總共情況,再數(shù)出不相鄰兩組數(shù)據(jù)的種數(shù),根據(jù)古典概型概率的計算公式即可求得;(Ⅱ)根據(jù)題目所給參考公式,逐一進行計算即求出線性回歸方程;(Ⅲ)根據(jù)題目所給數(shù)據(jù),分別將12月1日、12月5日的數(shù)據(jù)代入檢驗即可.
試題解析:(Ⅰ)設五組數(shù)據(jù)依次是,則取出的兩組數(shù)據(jù)構成:
其中共有10個元素.
則選取的兩組數(shù)據(jù)恰好不相鄰這一事件為:
其中共有6個元素.
∴.
(Ⅱ)
,
又即,線性回歸方程為:
(Ⅲ)當時,,這與實際值比較,誤差沒有超過兩顆,又當時,,而實際值是,誤差也沒有超過兩顆,
(Ⅱ)問中得到的線性回歸方程是可靠的.
科目:高中數(shù)學 來源: 題型:
【題目】隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式.某機構對“使用微信交流”的態(tài)度進行調查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認為“使用微信交流”的態(tài)度與人的年齡有關;
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在[25,35)和[55,65)的被調查人中按照分層抽樣的方法選取6人進行追蹤調查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在[55,65)的概率.
參考數(shù)據(jù)如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值: (其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司有30名男職員和20名女職員,公司進行了一次全員參與的職業(yè)能力測試,現(xiàn)隨機詢問了該公司5名男職員和5名女職員在測試中的成績(滿分為30分),可知這5名男職員的測試成績分別為16,24,18,
22,20,5名女職員的測試成績分別為18,23,23,18,23,則下列說法一定正確的是( )
A. 這種抽樣方法是分層抽樣
B. 這種抽樣方法是系統(tǒng)抽樣
C. 這5名男職員的測試成績的方差大于這5名女職員的測試成績的方差
D. 該測試中公司男職員的測試成績的平均數(shù)小于女職員的測試成績的平均數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,
(1)當時,求在區(qū)間上最大值和最小值;
(2)如果方程有三個不相等的實數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)如圖,曲線由上半橢圓和部分拋物線 連接而成, 的公共點為,其中的離心率為.
(Ⅰ)求的值;
(Ⅱ)過點的直線與分別交于(均異于點),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,下圖為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第n個圖形包含個小正方形.
(1)求出;
(2)利用合情推理的“歸納推理思想”歸納出與的關系式,
(3)根據(jù)你得到的關系式求的表達式
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示是某企業(yè)2010年至2016年污水凈化量(單位: 噸)的折線圖.
注: 年份代碼1-7分別對應年份2010-2016.
(1)由折線圖看出,可用線性回歸模型擬合和的關系,請用相關系數(shù)加以說明;
(2)建立關于的回歸方程,預測年該企業(yè)污水凈化量;
(3)請用數(shù)據(jù)說明回歸方程預報的效果.
附注: 參考數(shù)據(jù):;
參考公式:相關系數(shù),回歸方程中斜率和截距的最;
二乘法估汁公式分別為;
反映回歸效果的公式為:,其中越接近于,表示回歸的效果越好.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).現(xiàn)提供的大致圖像的8個選項:
(A)(B)(C)(D)
(E)(F)(G)(H)
(Ⅰ)請你作出選擇,你選的是( );
(Ⅱ)對于函數(shù)圖像的判斷,往往只需了解函數(shù)的基本性質.為了驗證你的選擇的正確性,請你解決下列問題:
①的定義域是 ;
②就奇偶性而言, 是 ;
③當時, 的符號為正還是負?并證明你的結論.
(解決了上述三個問題,你要調整你的選項,還來得及.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com