設(shè)AB是橢圓Γ的長(zhǎng)軸,點(diǎn)C在Γ上,且∠CBA=,若AB=4,BC=,則Γ的兩個(gè)焦點(diǎn)之間的距離為  

試題分析:如圖,設(shè)橢圓的標(biāo)準(zhǔn)方程為,
由題意知,2a=4,a=2.
∵∠CBA=,BC=,∴點(diǎn)C的坐標(biāo)為C(﹣1,1),
因點(diǎn)C在橢圓上,∴,
∴b2=,
∴c2=a2﹣b2=4﹣=,c=,
則Γ的兩個(gè)焦點(diǎn)之間的距離為

點(diǎn)評(píng):本題考查橢圓的定義、解三角形,以及橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C:(a>0,b>0)的左、右焦點(diǎn)分別為、,離心率為3,直線y=2與C的兩個(gè)交點(diǎn)間的距離為.
(Ⅰ)求a,b;
(Ⅱ)設(shè)過的直線l與C的左、右兩支分別交于A、B兩點(diǎn),且,證明:、、成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過直線上一點(diǎn)作圓的切線,若關(guān)于直線對(duì)稱,則點(diǎn)到圓心的距離為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知,,,,其中.設(shè)直線的交點(diǎn)為,求動(dòng)點(diǎn)的軌跡的參數(shù)方程(以為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

動(dòng)點(diǎn)到兩定點(diǎn),連線的斜率的乘積為),則動(dòng)點(diǎn)P在以下哪些曲線上(    )(寫出所有可能的序號(hào))
① 直線   ② 橢圓   ③ 雙曲線  ④ 拋物線      ⑤ 圓
A.①⑤B.③④⑤C.①②③⑤D.①②③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的左焦點(diǎn)為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直接坐標(biāo)系中,直線的方程為,曲線的參數(shù)方程為為參數(shù)).
(I)已知在極坐標(biāo)(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,點(diǎn)的極坐標(biāo)為(4,),判斷點(diǎn)與直線的位置關(guān)系;
(II)設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過直線y=﹣1上的動(dòng)點(diǎn)A(a,﹣1)作拋物線y=x2的兩切線AP,AQ,P,Q為切點(diǎn).
(1)若切線AP,AQ的斜率分別為k1,k2,求證:k1•k2為定值.
(2)求證:直線PQ過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y2= 2x的準(zhǔn)線方程是(   )
A.y=B.y=-C.x=D.x=-

查看答案和解析>>

同步練習(xí)冊(cè)答案