精英家教網 > 高中數學 > 題目詳情

(本小題滿分14分)

某中學生物興趣小組在學校生物園地種植了一批名貴樹苗,為了解樹苗的生長情況,從這批樹苗中隨機地測量了其中50棵樹苗的高度(單位:厘米),并把這些高度列成了如下的頻數分布表:

分  組

[40 , 50)

[50,60)

[60,70)

[70,80)

[80,90)

[90 , 100]

頻  數

2

3

14

15

12

4

(1) 在這批樹苗中任取一棵,其高度不低于80厘米的概率是多少?

(2)這批樹苗的平均高度大約是多少?(計算時用各組的中間值代替各組數據的平均值);

(3)為了進一步獲得研究資料,若從[40,50)組中移出一棵樹苗,從[90,100]組中移出兩棵樹苗進行試驗研究,則[40 ,50)組中的樹苗A和[90,100]組中的樹苗C同時被移出的概率是多少?

 

【答案】

解:(I)∵高度不低于80厘米的頻數是12+4=16,

          ∴高度不低于80厘米樹苗的概率為.…………………3分

(2)樹苗的平均高度

               ㎝  ………………6分

(3)設[40,50)組中的樹苗為A、B,  [90,100] 組中的樹苗為C、D、E、F,則基本事件總數為12,它們是: ACD、ACE、ACF、ADE、ADF、AEF

                BCD、BCE、BCF、BDE、BDF、BEF      ………………12分

而滿足A、C同時被移出的事件為ACD、ACE、ACF共3種   ………………13分

∴樹苗A和樹苗C同時被移出的概率  ………………14分

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數f(x)
的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數的圖像上,其中=.
(1)證明:數列}是等比數列;
(2)設,求及數列{}的通項公式;
(3)記,求數列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統計發(fā)現,第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案