下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù).
x
3
4
5
6
y
2.5
3
4
4.5
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖.
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程=bx+a.
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)
(1) 如圖

(2) =0.7x+0.35    (3) 19.65
(1)由題設(shè)所給數(shù)據(jù)可得散點(diǎn)圖如圖所示:

(2)對(duì)照數(shù)據(jù),計(jì)算得=86,
==4.5,
==3.5,
已知xiyi=66.5,
所以,由最小二乘法確定的回歸方程的系數(shù)為:
b===0.7,
a=-b=3.5-0.7×4.5=0.35,
因此,所求的回歸方程為=0.7x+0.35.
(3)由(2)的回歸方程及技改前生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗得,降低的生產(chǎn)能耗為
90-(0.7×100+0.35)=19.65(噸標(biāo)準(zhǔn)煤).
【方法技巧】
1.用最小二乘法求回歸直線方程的步驟

2.回歸方程的應(yīng)用
利用回歸方程可以對(duì)總體進(jìn)行預(yù)測(cè)估計(jì),回歸方程將部分觀測(cè)值所反映的規(guī)律進(jìn)行延伸,使我們對(duì)有線性相關(guān)關(guān)系的兩個(gè)變量進(jìn)行分析和控制,依據(jù)自變量的取值估計(jì)和預(yù)報(bào)因變量的值,在現(xiàn)實(shí)生活中有廣泛的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力和判斷力進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù):










根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程中的的值為,則記憶力為的同學(xué)的判斷力約為(附:線性回歸方程中,,其中、為樣本平均值)( )
A.           B.            C.              D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某單位為了解用電量y度與氣溫x℃之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天的用電量與當(dāng)天氣溫.
氣溫(℃)
14
12
8
6
用電量(度)
22
26
34
38
由表中數(shù)據(jù)得線性回歸方程x+=-2,據(jù)此預(yù)測(cè)當(dāng)氣溫為5 ℃時(shí),用電量的度數(shù)約為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知x,y取值如下表:
x
0
1
4
5
6
8
y
1.3
1.8
5.6
6.1
7.4
9.3
從所得的散點(diǎn)圖分析可知:yx線性相關(guān),且 =0.95xa,則a=(   ).
A.1.30      B.1.45      C.1.65          D.1.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

為了考察兩個(gè)變量之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨(dú)立地做100次和150次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為,已知兩人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量的觀測(cè)數(shù)據(jù)的平均值都是,對(duì)變量的觀測(cè)數(shù)據(jù)的平均值都是,那么下列說(shuō)法正確的是(     )
A.有交點(diǎn)B.相交,但交點(diǎn)不一定是
C.必定平行D.必定重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在調(diào)查學(xué)生數(shù)學(xué)成績(jī)與物理成績(jī)之間的關(guān)系時(shí),得到如下數(shù)據(jù)(人數(shù)):
 
物理
成績(jī)好
物理
成績(jī)不好
合計(jì)
數(shù)學(xué)成績(jī)好
62
23
85
數(shù)學(xué)成績(jī)不好
28
22
50
合計(jì)
90
45
135
那么有把握認(rèn)為數(shù)學(xué)成績(jī)與物理成績(jī)之間有關(guān)的百分比為(  )
(A)25%  (B)75%  (C)95%  (D)99%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

為了解籃球愛(ài)好者小李的投籃命中率與打籃球時(shí)間之間的關(guān)系,下表記錄了小李某月1號(hào)到5號(hào)每天打籃球時(shí)間x(單位:小時(shí))與當(dāng)天投籃命中率y之間的關(guān)系:
時(shí)間x
1
2
3
4
5
命中率y
0.4
0.5
0.6
0.6
0.4
小李這5天的平均投籃命中率為    ;用線性回歸分析的方法,預(yù)測(cè)小李該月6號(hào)打6小時(shí)籃球的投籃命中率為    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

為了判斷高中三年級(jí)學(xué)生是否選修文科與性別的關(guān)系,現(xiàn)隨機(jī)抽取50名學(xué)生,得到如下2×2列聯(lián)表:
 
理科
文科

13
10

7
20
已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.
根據(jù)表中數(shù)據(jù),得到k=≈4.844.
則認(rèn)為選修文科與性別有關(guān)系出錯(cuò)的可能性為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

給出施化肥量(kg)對(duì)水稻產(chǎn)量(kg)影響的試驗(yàn)數(shù)據(jù):
施化肥量x
15
20
25
30
水稻產(chǎn)量y
330
345
365
405
(1)試求出回歸直線方程;
(2)請(qǐng)估計(jì)當(dāng)施化肥量為10時(shí),水稻產(chǎn)量為多少?
(已知:7.5×31.25+2.5×16.25+2.5×3.75+7.5×43.75=612.5,2×7.5×7.5+2×2.5×2.5=125)

查看答案和解析>>

同步練習(xí)冊(cè)答案