(2012•濟寧一模)已知{an}為等差數(shù)列,其公差為-2,且a7是a3與a9的等比中項,Sn為{an}的前n項和,n∈N*則Sn的最大值為
110
110
分析:先用d=-2及首項a1表示a3,a7,a9,然后由a72=a3a9可求a1,代入到等差數(shù)列的求和公式,利用二次函數(shù)的性質(zhì)可求和的最大
解答:解:由題意可得,a72=a3a9,d=-2
(a1-12)2=(a1-4)(a1-16)
∴a1=20
由等差數(shù)列的求和公式可得,Sn=20n  +
n(n-1)
2
×(-2)
=-n2+21n=-(n-
21
2
)
2
+
441
4

∵n∈N+
當n=10或n=11時,Sn最大,最大值為110
故答案為110
點評:本題主要考查了等差數(shù)列的通項公式、求和公式的應用,解題的關鍵是靈活應用了二次函數(shù)的性質(zhì)求解和的最值
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•濟寧一模)觀察下列式子:1+
1
2
2
 
3
2
,1+
1
2
2
 
+
1
3
2
 
5
3
,1+
1
2
2
 
+
1
3
2
 
+
1
4
2
 
7
4
,…,根據(jù)上述規(guī)律,第n個不等式應該為
1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1
1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•濟寧一模)給出下列命題:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②命題“若am2<bm2,則a<b”的逆命題是真命題;
③f(x)是(-∞,0)∪(0,+∞)上的奇函數(shù),x>0時的解析式是f(x)=2*.則x<0時的解析式為f(x)=-2-x;
④若隨機變量ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,則P(ξ≥2)=0.2.
其中真命題的序號是
①③④
①③④
.(寫出所有你認為正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•濟寧一模)若等邊△ABC的邊長為2
3
,平面內(nèi)一點M滿足
CM
=
1
3
CB
+
1
3
CA
,則
MA
MB
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•濟寧一模)設全集U={x∈N*|x<6},集合A={1,3},B={3,5},則?U(A∪B)等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•濟寧一模)已知
2
x
+
8
y
=1,(x>0,y>0),則x+y的最小值為( 。

查看答案和解析>>

同步練習冊答案