【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為 ,且圖象上一個(gè)最高點(diǎn)為M( ,3).
(1)求f(x)的解析式;
(2)先把函數(shù)y=f(x)的圖象向左平移 個(gè)單位長度,然后再把所得圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,試寫出函數(shù)y=g(x)的解析式.
(3)在(2)的條件下,若總存在x0∈[﹣ , ],使得不等式g(x0)+2≤log3m成立,求實(shí)數(shù)m的最小值.
【答案】
(1)解:∵ T= ,
∴T= =π,解得ω=2;
又函數(shù)f(x)=Asin(2x+φ)圖象上一個(gè)最高點(diǎn)為M( ,3),
∴A=3,2× +φ=2kπ+ (k∈Z),
∴φ=2kπ+ (k∈Z),又0<φ< ,
∴φ= ,
∴f(x)=3sin(2x+ )
(2)解:把函數(shù)y=f(x)的圖象向左平移 個(gè)單位長度,得到f(x+ )=3sin[2(x+ )+ ]=3cos2x;
然后再把所得圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)=3cosx的圖象,
即g(x)=3cosx
(3)解:∵x0∈[﹣ , ],∴﹣ ≤cosx0≤1,﹣ ≤3cosx0≤3,
依題意知,log3m≥(﹣ )+2= ,
∴m≥ ,即實(shí)數(shù)m的最小值為
【解析】(1)依題意知 T= ,由此可求得ω=2;又函數(shù)f(x)=Asin(2x+φ)圖象上一個(gè)最高點(diǎn)為M( ,3),可知A=3,2× +φ=2kπ+ (k∈Z),結(jié)合0<φ< 可求得φ,從而可得f(x)的解析式;(2)利用函數(shù)y=Asin(ωx+φ)的圖象變換可求得函數(shù)y=g(x)的解析式;(3)x0∈[﹣ , ]﹣ ≤cosx0≤1,﹣ ≤3cosx0≤3,依題意知,log3m≥(﹣ )+2= ,從而可求得實(shí)數(shù)m的最小值.
【考點(diǎn)精析】利用函數(shù)y=Asin(ωx+φ)的圖象變換對(duì)題目進(jìn)行判斷即可得到答案,需要熟知圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)學(xué)生和包括老師、家長在內(nèi)的社會(huì)人士對(duì)高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語聽力”的問題,調(diào)查統(tǒng)計(jì)的結(jié)果如下表:
| 應(yīng)該取消 | 應(yīng)該保留 | 無所謂 | |
在校學(xué)生 | 2100人 | 120人 | y人 | |
社會(huì)人士 | 600人 | x人 | z人 |
已知在全體樣本中隨機(jī)抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.05.
(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進(jìn)行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 、分別為直角三角形的直角邊和斜邊的中點(diǎn),沿將折起到的位置,連結(jié)、, 為的中點(diǎn).
(1)求證: 平面;(2)求證:平面平面;
(3)求證: 平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},{bn}滿足a1=1,an+1=2an+1,b1=4,bn﹣bn﹣1=an+1(n≥2).
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)求數(shù)列{an},{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,漁船甲位于島嶼A的南偏西60°方向的B處,且與島嶼A相距12海里,漁船乙以10海里/小時(shí)的速度從島嶼A出發(fā)沿正北方向航行,若漁船甲同時(shí)從B處出發(fā)沿北偏東α的方向追趕漁船乙,剛好用2小時(shí)追上.
(1)求漁船甲的速度;
(2)求sinα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, 是某海灣旅游區(qū)的一角,其中,為了營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會(huì)決定在直線海岸和上分別修建觀光長廊和AC,其中是寬長廊,造價(jià)是元/米, 是窄長廊,造價(jià)是元/米,兩段長廊的總造價(jià)為120萬元,同時(shí)在線段上靠近點(diǎn)的三等分點(diǎn)處建一個(gè)觀光平臺(tái),并建水上直線通道(平臺(tái)大小忽略不計(jì)),水上通道的造價(jià)是元/米.
(1) 若規(guī)劃在三角形區(qū)域內(nèi)開發(fā)水上游樂項(xiàng)目,要求的面積最大,那么和的長度分別為多少米?
(2) 在(1)的條件下,建直線通道還需要多少錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形中, , , ,將沿折起,使平面平面,構(gòu)成四面體,則在四面體中,下列說法不正確的是( ).
A. 直線直線 B. 直線直線
C. 直線平面 D. 平面平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知: 、 、 是同一平面內(nèi)的三個(gè)向量,其中 =(1,2)
(1)若| |=2 ,且 ∥ ,求 的坐標(biāo);
(2)若| |= ,且 +2 與2 ﹣ 垂直,求v與 的夾角θ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=sin2x(x∈R)圖象上所有的點(diǎn)向左平移 個(gè)單位長度,所得圖象的函數(shù)解析式為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com