已知函數(shù)若對任意x1∈[0,1],存在x2∈[1,2],使,求實數(shù)a的取值范圍?

試題分析:根據(jù)題意可知,函數(shù)上的最小值得大于等于上的值,所以得求得函數(shù)上的最小值,通過導數(shù)法,判斷單調(diào)性得最小值;然后令,建立關于的不等式,設出新的函數(shù),探討與的關系,從而得出滿足條件的實數(shù).
試題解析:根據(jù) ,求導可得,
顯然,所以函數(shù)上單調(diào)遞增.所以
根據(jù)題意可知存在,使得,
能成立,
,則要使,在能成立,只需使
又函數(shù)中,,求導可得.當時,顯然,所以函數(shù)上單調(diào)遞減.
所以,故只需.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),其中是自然對數(shù)的底數(shù),
(1)若,求曲線在點處的切線方程;
(2)若,求的單調(diào)區(qū)間;
(3)若,函數(shù)的圖像與函數(shù)的圖像有3個不同的交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù),其中.
(1)當時,求的單調(diào)遞增區(qū)間;
(2)若在區(qū)間上的最小值為8,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的圖象過點P(0,2),且在點M(-1,)處的切線方程
(1)求函數(shù)的解析式;   
(2)求函數(shù)的圖像有三個交點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)在區(qū)間上單調(diào)遞增,且方程的根都在區(qū)間上,則實數(shù)b的取值范圍為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線與函數(shù)的圖像有三個相異的交點,則的取值范圍為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,分別是定義在上的奇函數(shù)和偶函數(shù),當時,,且,則不等式的解集是  (  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

我們把形如y=f(x)φ(x)的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導時,可以利用對數(shù)法:在函數(shù)解析式兩邊求對數(shù)得ln y=φ(x)lnf(x),兩邊求導得=φ′(x)·ln f(x)+φ(x)·,于是y′=f(x)φ(x)[φ′(x)·ln f(x)+φ(x)·].運用此方法可以探求得y=x的單調(diào)遞增區(qū)間是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)y=
x
sinx的導數(shù)為( 。
A.y′=2
x
sinx+
x
cosx
B.y′=
sinx
x
-
x
cosx
C.y′=
sinx
x
+
x
cosx
D.y′=
sinx
2
x
+
x
cosx

查看答案和解析>>

同步練習冊答案