【題目】已知定義在R上的函數(shù)f(x)滿足:①f(x)+f(2﹣x)=0;②f(x﹣2)=f(﹣x),③在[﹣1,1]上表達式為f(x)= ,則函數(shù)f(x)與函數(shù)g(x)= 的圖象在區(qū)間[﹣3,3]上的交點個數(shù)為( )
A.5
B.6
C.7
D.8
【答案】B
【解析】解:由f(x)+f(2﹣x)=0,可得函數(shù)f(x)的圖象關(guān)于點M(1,0)對稱.
由f(x﹣2)=f(﹣x),可得函數(shù)f(x)的圖象關(guān)于直線x=﹣1對稱.
又在[﹣1,1]上表達式為f(x)= ,可得圖象:
進而得到在區(qū)間[﹣3,3]上的圖象.
畫出函數(shù)g(x)= 在區(qū)間[﹣3,3]上的圖象,
其交點個數(shù)為6個.
故選:B.
由f(x)+f(2﹣x)=0,可得函數(shù)f(x)的圖象關(guān)于點M(1,0)對稱.由f(x﹣2)=f(﹣x),可得函數(shù)
f(x)的圖象關(guān)于直線x=﹣1對稱.畫出f(x)在[﹣1,1]上的圖象:進而得到在區(qū)間[﹣3,3]上的圖象.畫出函數(shù)g(x)在區(qū)間[﹣3,3]上的圖象,即可得出交點個數(shù).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: 過點 ,離心率為 ,點F1 , F2分別為其左、右焦點.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點P,Q,且 ?若存在,求出該圓的方程,并求|PQ|的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形ABCD(如圖1),AB=4,AD=2,∠DAB=60°,E為AB的中點,把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F(xiàn)是線段A1C的中點(如圖2).
(1)求證:BF∥面A1DE;
(2)求證:面A1DE⊥面DEBC;
(3)求二面角A1﹣DC﹣E的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+x﹣16.
(1)求曲線y=f(x)在點(2,﹣6)處的切線方程;
(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點,求直線l的方程及切點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣3mx+n(m>0)的兩個零點分別為1和2.
(1)求m、n的值;
(2)若不等式f(x)﹣k>0在x∈[0,5]恒成立,求k的取值范圍.
(3)令 ,若函數(shù)F(x)=g(2x)﹣r2x在x∈[﹣1,1]上有零點,求實數(shù)r的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),f(2)=0, <0(x>0),則不等式xf(x)<0的解集 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機抽取某中學(xué)甲乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.
(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)計算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,定義在[﹣2,2]的偶函數(shù)f(x)的圖象如圖所示,則方程f(f(x))=0的實根個數(shù)為( )
A.3
B.4
C.5
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式組 表示的平面區(qū)域為D,則
(1)z=x2+y2的最小值為 .
(2)若函數(shù)y=|2x﹣1|+m的圖象上存在區(qū)域D上的點,則實數(shù)m的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com