已知函數(shù)
(Ⅰ)當(dāng)時,求在區(qū)間上的最值;
(Ⅱ)討論函數(shù)的單調(diào)性.

(1)
(2)當(dāng)時,單調(diào)遞增
當(dāng)時,單調(diào)遞增,在上單調(diào)遞減.
當(dāng)時,單調(diào)遞減;

解析試題分析:(1)利用函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;(2)解決類似的問題時,注意區(qū)分函數(shù)的最值和極值.求函數(shù)的最值時,要先求函數(shù)在區(qū)間內(nèi)使的點(diǎn),再計算函數(shù)在區(qū)間內(nèi)所有使的點(diǎn)和區(qū)間端點(diǎn)處的函數(shù)值,最后比較即得;(4)若可導(dǎo)函數(shù)在指定的區(qū)間上單調(diào)遞增(減),求參數(shù)問題,可轉(zhuǎn)化為恒成立,從而構(gòu)建不等式,要注意“=”是否可以取到.
試題解析:解:(Ⅰ)當(dāng)時,,

的定義域為,∴由 得
在區(qū)間上的最值只可能在取到,

 .     
(Ⅱ)
①當(dāng),即時,單調(diào)遞減;
②當(dāng)時,單調(diào)遞增;        
③當(dāng)時,由(舍去)
單調(diào)遞增,在上單調(diào)遞減; 
綜上,
當(dāng)時,單調(diào)遞增;
當(dāng)時,單調(diào)遞增,在上單調(diào)遞減.
當(dāng)時,單調(diào)遞減;
考點(diǎn):(1)利用導(dǎo)數(shù)求函數(shù)的最值;(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=﹣x3+x2+3x+a.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間[﹣3,3]上的最小值為,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的導(dǎo)函數(shù)為.求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處有極大值.
(Ⅰ)求的值;
(Ⅱ)若過原點(diǎn)有三條直線與曲線相切,求的取值范圍;
(Ⅲ)當(dāng)時,函數(shù)的圖象在拋物線的下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)= -ax(a∈R,e為自然對數(shù)的底數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,函數(shù)g(x)=(x-m)f(x)-+x2+x在區(qū)間(0,+)上為增函數(shù),求整數(shù)m 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時,討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

用白鐵皮做一個平底、圓錐形蓋的圓柱形糧囤,糧囤容積為(不含錐形蓋內(nèi)空間),蓋子的母線與底面圓半徑的夾角為,設(shè)糧囤的底面圓半徑為R,需用白鐵皮的面積記為(不計接頭等)。
(1)將表示為R的函數(shù);
(2)求的最小值及對應(yīng)的糧囤的總高度。(含圓錐頂蓋)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)是偶函數(shù),若曲線在點(diǎn)處的切線的斜率為1,則該曲線在點(diǎn)處的切線的斜率為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知函數(shù)及其導(dǎo)函數(shù)的圖象如圖所示,則曲線在點(diǎn)處的切線方程是___▲___

查看答案和解析>>

同步練習(xí)冊答案