設函數(shù)f(x)=ax3+bx+cx+d的圖象與y軸的交點為點P,且曲線在點P處的切線方程為12x-y-4=0,若函數(shù)在x=2處取得極值0,試求函數(shù)的單調區(qū)間.
【答案】分析:根據(jù)切點既在切線上又在函數(shù)f(x)的圖象上,即可求出d,根據(jù)導數(shù)的幾何意義可知函數(shù)在x=0處的導數(shù)即為切線的斜率,求出c,再根據(jù)函數(shù)在x=2處取得極值0,建立f'(2)=0,f(2)=0,求出a和b,從而求出函數(shù)f(x)的解析式,最后解不等式fˊ(x)>0和fˊ(x)<0即可求出函數(shù)的單調區(qū)間.
解答:解:∵點P在切線12x-y-4=0上,∴P(0,-4),∴d=-4.
f'(x)=3ax2+2bx+c,∴f'(0)=12,∴c=12.(4分)
又f'(2)=0,f(2)=0,得a=2,b=-9.(6分)
f(x)=2x3-9x2+12x-4,f'(x)=6x2-18x+12=6(x-1)(x-2),(8分)
f(x)的單調遞增區(qū)間是(-∞,1)和(2,+∞),單調遞減區(qū)間是(1,2)
點評:本題主要考查了利用導數(shù)研究曲線上某點切線方程,以及利用導數(shù)研究函數(shù)的極值和單調性等基礎題知識,考查運算求解能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax+
xx-1
(x>1),若a是從1,2,3三個數(shù)中任取一個數(shù),b是從2,3,4,5四個數(shù)中任取一個數(shù),求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax+b的圖象經(jīng)過點(1,7),又其反函數(shù)的圖象經(jīng)過點(4,0),求函數(shù)的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•楊浦區(qū)一模)(文)設函數(shù)f(x)=ax+1-2(a>1)的反函數(shù)為y=f-1(x),則f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設函數(shù)f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a為如圖所示的程序框圖中輸出的結果,則f(x)的展開式中常數(shù)項是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步練習冊答案