拋物線上的一動點到直線距離的最小值是 ( )
A. | B. | C. | D. |
A
解析試題分析:對y=x2求導(dǎo)可求與直線x-y-1=0平行且與拋物線y=x2相切的切線方程,然后利用兩平行線的距離公司可得所求的最小距離d。解:(法一)對y=x2求導(dǎo)可得y′=2x,令y′=2x=1可得x=∴與直線x-y-1=0平行且與拋物線y=x2相切的切點(,),切線方程為y-=x-即x-y-=0由兩平行線的距離公司可得所求的最小距離d=,故選A.
考點:直線與拋物線的位置關(guān)系
點評:本題考查直線與拋物線的位置關(guān)系的應(yīng)用,解題時要注意公式的靈活運用,拋物線的基本性質(zhì)和點到線的距離公式的應(yīng)用,考查綜合運用能力
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)F1、F2是橢圓E:的左、右焦點,P為直線上一點,
△F2PF1是底角為30°的等腰三角形,則E的離心率為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知雙曲線的右焦點F(2,0),設(shè)A,B為雙曲線上關(guān)于原點對稱的兩點,以AB為直徑的圓過點F,直線AB的斜率為,則雙曲線的的離心率為( )
A. | B. | C.4 | D.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
知圓柱的底面半徑為2,高為3,用一個平面去截,若所截得的截面為橢圓,則橢圓的離心率的取值范圍為( )
A. | B.(0, | C. | D.(0, |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)拋物線C:y2=4x的焦點為F,直線過F且與C交于A, B兩點.若|AF|=3|BF|,則的方程為( )
A.y=x-1或y=-x+1 |
B.y=(X-1)或y=(x-1) |
C.y=(x-1)或y=(x-1) |
D.y=(x-1)或y=(x-1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com