【題目】已知集合A={x|1-ax≤1+a}a0),B={x|x2-5x+4≤0}

1)若xAxB的必要不充分條件,求實(shí)數(shù)a的取值范圍;

2)對(duì)任意xB,不等式x2-mx+4≥0都成立,求實(shí)數(shù)m的取值范圍.

【答案】(1)[3,+∞);(2)(-∞,4].

【解析】

1)根據(jù)xAxB的必要不充分條件,即可得出a滿足的條件.

2)要使任意xB,不等式x2-mx+4≥0都成立,又B={x|x2-5x+4≤0}={x|1≤x≤4}.由x2-mx+4≥0,得,只要,即可得出.

解:(1A={x|1-ax≤1+a}a0),B={x|x2-5x+4≤0}={x|1≤x≤4}

因?yàn)?/span>xAxB的必要不充分條件,即BA,

所以,或

所以,,或

所以a≥3

所以,實(shí)數(shù)a的取值范圍是[3,+∞).

2)要使任意xB,不等式x2-mx+4≥0都成立,又B={x|x2-5x+4≤0}={x|1≤x≤4}

x2-mx+4≥0,得,

則只要,又,當(dāng)且僅當(dāng),即x=2時(shí)等號(hào)成立.

實(shí)數(shù)m的取值范圍(-∞4]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為確定下一年投入某種產(chǎn)品的研發(fā)費(fèi)用,需了解年研發(fā)費(fèi)用(單位:千萬(wàn)元)對(duì)年銷售量(單位:千萬(wàn)件)的影響,統(tǒng)計(jì)了近10年投入的年研發(fā)費(fèi)用與年銷售量 的數(shù)據(jù),得到散點(diǎn)圖如圖所示:

1)利用散點(diǎn)圖判斷,(其中為大于0的常數(shù))哪一個(gè)更適合作為年研發(fā)費(fèi)用和年銷售量的回歸方程類型(只要給出判斷即可,不必說(shuō)明理由).

2)對(duì)數(shù)據(jù)作出如下處理:令,,得到相關(guān)統(tǒng)計(jì)量的值如下表:

根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),求關(guān)于的回歸方程;

3)已知企業(yè)年利潤(rùn)(單位:千萬(wàn)元)與的關(guān)系為(其中),根據(jù)(2)的結(jié)果,要使得該企業(yè)下一年的年利潤(rùn)最大,預(yù)計(jì)下一年應(yīng)投入多少研發(fā)費(fèi)用?

附:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,過(guò)的直線交橢圓、兩點(diǎn),若的最大值為5,則b的值為( )

A. 1 B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線的左焦點(diǎn)為,點(diǎn)A的坐標(biāo)為(01),點(diǎn)P為雙曲線右支上的動(dòng)點(diǎn),且APF1周長(zhǎng)的最小值為6,則雙曲線的離心率為( 。

A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cy2=2pxp0)的焦點(diǎn)為F,拋物線C上橫坐標(biāo)為3的點(diǎn)M到焦點(diǎn)F的距離為4

1)求拋物線C的方程;

2)過(guò)拋物線C的焦點(diǎn)F且斜率為1的直線l交拋物線CA、B兩點(diǎn),求弦長(zhǎng)|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面幾個(gè)命題中,假命題是(

A. ,則的否命題

B. ,函數(shù)在定義域內(nèi)單調(diào)遞增的否定

C. 是函數(shù)的一個(gè)周期是函數(shù)的一個(gè)周期

D. 的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于曲線,有如下結(jié)論:

①曲線關(guān)于原點(diǎn)對(duì)稱;

②曲線關(guān)于坐標(biāo)軸對(duì)稱;

③曲線是封閉圖形;

④曲線不是封閉圖形,且它與圓無(wú)公共點(diǎn);

⑤曲線與曲線個(gè)交點(diǎn),這點(diǎn)構(gòu)成正方形.其中有正確結(jié)論的序號(hào)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義域?yàn)?/span>的函數(shù),如果存在區(qū)間,其中,同時(shí)滿足:

內(nèi)是單調(diào)函數(shù):②當(dāng)定義域?yàn)?/span>時(shí),的值域?yàn)?/span>,則稱函數(shù)是區(qū)間上的“保值函數(shù)”,區(qū)間稱為“保值函數(shù)”.

(1)求證:函數(shù)不是定義域上的“保值函數(shù)”;

(2)若函數(shù))是區(qū)間上的“保值函數(shù)”,求的取值范圍;

(3)對(duì)(2)中函數(shù),若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案