已知梯形,,,、分別是、上的點,,.沿將梯形翻折,使平面⊥平面(如圖).的中點.

(1)當(dāng)時,求證: ;
(2)當(dāng)變化時,求三棱錐體積的最大值.

(1)證明過程詳見解析;(2)當(dāng)時,最大值為.

解析試題分析:本題主要考查空間兩條直線的位置關(guān)系、直線與平面垂直等基礎(chǔ)知識,考查空間想象能力、運(yùn)算能力和推理論證能力.第一問,先作輔助線,由面面垂直的性質(zhì)得平面,所以垂直于面內(nèi)的線,又可以由已知證出四邊形為正方形,所以,再利用線面垂直的判定證明平面,從而得;第二問,由已知,利用線面垂直的判定證明,結(jié)合第一問的結(jié)論平面,得,設(shè)出三棱錐的高,列出體積公式,通過配方法求最大值.
試題解析:(1)證明:作,交,連結(jié),,         1分
∵平面平面,交線平面,
平面,又平面,故.    3分
,
∴四邊形為正方形,故.                   5分
、平面,且,故平面
平面,故.                        6分
(2)解:∵,平面平面,交線,平面
.又由(1)平面,故,  7分
∴四邊形是矩形,,故以、、為頂點的三
棱錐的高.                         9分
.          &

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

下圖是一幾何體的直觀圖、主視圖、俯視圖、左視圖.

(1)若的中點,求證:;
(2)證明.
(3)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正三棱錐的底面邊長為,側(cè)棱長為,為棱的中點.

(1)求異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)求該三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在底面是正方形的四棱錐中,,于點,中點,上一動點.

(1)求證:;
(1)確定點在線段上的位置,使//平面,并說明理由.
(3)如果PA=AB=2,求三棱錐B-CDF的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知幾何體的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.

(1)求異面直線所成角的余弦值;
(2)求二面角的正弦值;
(3)求此幾何體的體積的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某個實心零部件的形狀是如下圖所示的幾何體,其下部是底面均是正方形,側(cè)面是全等的等腰梯形的四棱臺,上部是一個底面與四棱臺的上底面重合,側(cè)面是全等的矩形的四棱柱.

(1)證明:直線平面
(2)現(xiàn)需要對該零部件表面進(jìn)行防腐處理.已知,,(單位:),每平方厘米的加工處理費(fèi)為元,需加工處理費(fèi)多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示的幾何體ABCDFE中,△ABC,△DFE都是等邊三角形,且所在平面平行,四邊形BCED是邊長為2的正方形,且所在平面垂直于平面ABC.

(Ⅰ)求幾何體ABCDFE的體積;
(Ⅱ)證明:平面ADE∥平面BCF;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,斜三棱柱ABC-A'B'C'中,底面是邊長為a的正三角形,側(cè)棱長為b,側(cè)棱AA'與底面相鄰兩邊AB,AC都成45°角.

(Ⅰ)求此斜三棱柱的表面積.
(Ⅱ)求三棱錐B'-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖在三棱柱中,側(cè)棱底面,的中點, ,.

(1)求證:平面;
(2)求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案