若經(jīng)過點P(0,2)且以
d
=(1,a)
為方向向量的直線l與雙曲線3x2-y2=1相交于不同兩點A、B,則實數(shù)a的取值范圍是
 
分析:由題意可得,直線l的斜率為 a,故直線l的方程為 y-2=a(x-0),代入雙曲線3x2-y2=1化簡可得
(3-a2)x2-4ax-5=0,由題意可得 3-a2≠0,且 60-4a2>0,解不等式求得實數(shù)a的取值范圍.
解答:解:由題意可得,直線l的斜率為 a,故直線l的方程為  y-2=a(x-0),代入雙曲線3x2-y2=1化簡可得
(3-a2)x2-4ax-5=0,由題意可得:3-a2≠0,且 60-4a2>0.
即  a≠±
3
,且-
15
<a<
15
,故實數(shù)a的取值范圍是 (-
15
,-
3
)∪(-
3
,
3
)∪(
3
,
15
)

故答案為:(-
15
,-
3
)∪(-
3
,
3
)∪(
3
15
)
點評:本題考查直線和圓錐曲線的位置關(guān)系,得到 3-a2≠0,且 60-4a2>0,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知經(jīng)過點P(0,2)且以
d
=(1,a)
為一個方向向量的直線l與雙曲線3x2-y2=1相交于不同兩點A、B.
(1)求實數(shù)a的取值范圍;
(2)若點A、B均在已知雙曲線的右支上,且滿足
OA
OB
=0
,求實數(shù)a的值;
(3)是否存在這樣的實數(shù)a,使得A、B兩點關(guān)于直線y=
1
2
x-8
對稱?若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若經(jīng)過點P(0,2)且以數(shù)學(xué)公式為方向向量的直線l與雙曲線3x2-y2=1相交于不同兩點A、B,則實數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市楊浦區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

若經(jīng)過點P(0,2)且以為方向向量的直線l與雙曲線3x2-y2=1相交于不同兩點A、B,則實數(shù)a的取值范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市楊浦區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

若經(jīng)過點P(0,2)且以為方向向量的直線l與雙曲線3x2-y2=1相交于不同兩點A、B,則實數(shù)a的取值范圍是   

查看答案和解析>>

同步練習(xí)冊答案