【題目】平面直角坐標系中,有橢圓 (為參數(shù))和拋物線 (為參數(shù)).

(Ⅰ)是否存在這樣的值,使得該橢圓與該拋物線有四個不同的交點?請說明理由.

(Ⅱ)當取何值時,該橢圓與該拋物線的交點與坐標原點的距離等于這個交點與該橢圓中心的距離?

【答案】(1)不存在(2)0或 .

【解析】試題分析:(1)將題中的橢圓及拋物線方程分別消參化為普通方程,并聯(lián)立得方程組,轉化為二次方程根的分布問題;(2)確定該橢圓與該拋物線的交點與坐標原點的距離,確定這個交點與該橢圓中心的距離,比較判斷即可.

試題解析:

解:(Ⅰ)將題中的橢圓及拋物線方程分別消參化為普通方程,并聯(lián)立得方程組:

消去y得,令.

由拋物線方程知,則橢圓與拋物線有四個交點的充要條件是方程

上有兩個不等的實根,即

顯然此不等式組無解,故滿足題設條件的值不存在.

(Ⅱ)由Δ≥0得,又知橢圓的半長軸,拋物線的頂點為,故當,即時,橢圓與拋物線必相交.

若滿足題設條件,可有以下兩種情況:①橢圓中心與原點重合,此時;②橢圓與拋物線的交點在橢圓中心與原點所連線段的垂直平分線上,即交點在直線上,

代入,得,解得舍去負值).

綜上所述,滿足題設條件的值應為0或 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且時, ,則函數(shù)為自然對數(shù)的底數(shù))的零點個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】值域為(0,+∞)的函數(shù)是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經過原點的直線與橢圓交于兩點,點為橢圓上不同于的一點,直線的斜率均存在,且直線的斜率之積為.

(1)求橢圓的離心率;

(2)設分別為橢圓的左、右焦點,斜率為的直線經過橢圓的右焦點,且與橢圓交于兩點.若點在以為直徑的圓內部,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,圓的極坐標方程為,圓的極坐標方程為,已知交于兩點,點位于第一象限.

(Ⅰ)求點和點的極坐標;

(Ⅱ)設圓的圓心為,點是直線上的動點,且滿足,若直線的參數(shù)方程為為參數(shù)),則的值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】盒內有大小相同的9個球,其中2個紅色球,3個白色球,4個黑色球.規(guī)定取出1個紅色球得1分,取出1個白色球得0分,取出1個黑色球得分,現(xiàn)從盒內任取3個球.

(Ⅰ)求取出的3個球中至少有一個紅球的概率;

(Ⅱ)求取出的3個球得分之和恰為1分的概率;

(Ⅲ)設為取出的3個球中白色球的個數(shù),求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下結論正確的是(
A.若a<b且c<d,則ac<bd
B.若ac2>bc2 , 則a>b
C.若a>b,c<d,則a﹣c<b﹣d
D.若0<a<b,集合A={x|x= },B={x|x= },則A?B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某天數(shù)學課上,你突然驚醒,發(fā)現(xiàn)黑板上有如下內容:
例:求x3﹣3x,x∈[0,+∞)的最小值.解:利用基本不等式a+b+c≥3 ,得到x3+1+1≥3x,于是x3﹣3x=x3+1+1﹣3x﹣2≥3x﹣3x﹣2=﹣2,當且僅當x=1時,取到最小值﹣2
(1)老師請你模仿例題,研究x4﹣4x,x∈[0,+∞)上的最小值;
(提示:a+b+c+d≥4
(2)研究 x3﹣3x,x∈[0,+∞)上的最小值;
(3)求出當a>0時,x3﹣ax,x∈[0,+∞)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017安徽馬鞍山二!已知動圓過定點,且在軸上截得的弦長為4,記動圓圓心的軌跡為曲線C

(Ⅰ)求直線與曲線C圍成的區(qū)域面積;

(Ⅱ)點在直線上,點,過點作曲線C的切線、,切點分別為,證明:存在常數(shù),使得,并求的值.

查看答案和解析>>

同步練習冊答案