在各項均不為零的等差數(shù)列中,若,
(  )
A.B.C.D.
A
本題考查等差數(shù)列的前n項和、性質(zhì)和運算.
在等差數(shù)列中,又根據(jù)條件,所以時,;因為是等差數(shù)列,所以
.故選A
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)已知函數(shù)對任意實數(shù)p、q都滿足

(Ⅰ)當時,求的表達式;
(Ⅱ)設;
(Ⅲ)設求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(滿分12分)設為數(shù)列的前項和,對任意的,都有為常數(shù),且
(1)求證:數(shù)列是等比數(shù)列;
(2)設數(shù)列的公比,數(shù)列滿足,求數(shù)列的通項公式;
(3)在滿足(2)的條件下,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等差數(shù)列的前n項和為,且滿足,則數(shù)列的公差(     )
A.B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
設數(shù)列{an}的首項a1∈(0,1),an+1=(n∈N+
(I)求{an}的通項公式
(II)設bn=an,判斷數(shù)列{bn}的單調(diào)性,并證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知數(shù)列中,
(1)求數(shù)列的通項公式;
(2)設
(3)設是否存在最大的整數(shù)m,使得
對任意,均有成立?若存在,求出m,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正項等比數(shù)列{an}中,若S2=7,S6=91,則S4的值為                      (      )
A.  32             B, 28           C. 25             D. 24

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)給出下面的數(shù)表序列:

其中表n(n="1,2,3" )有n行,第1行的n個數(shù)是1,3,5,2n-1,從第2行起,每行中的每個數(shù)都等于它肩上的兩數(shù)之和。
(I)寫出表4,驗證表4各行中數(shù)的平均數(shù)按從上到下的順序構(gòu)成等比數(shù)列,并將結(jié)論推廣到表n(n≥3)(不要求證明);
(II)每個數(shù)列中最后一行都只有一個數(shù),它們構(gòu)成數(shù)列1,4,12,記此數(shù)列為 求和: 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在等差數(shù)列中,前n項的和為Sn,若Sm=2n,Sn=2m,(m、n∈N且m≠n),則公差d
的值為(   )
A.-B.-C.-D.-

查看答案和解析>>

同步練習冊答案