若曲線的一條切線與直線垂直,則的方程為        

試題分析:的斜率為。設(shè)切點為(x,y),則4,所以x=1,y=1,直線l的方程為。
點評:簡單題,思路明確,切線的斜率是函數(shù)在切點的導數(shù)值。兩直線垂直,直線的斜率之積為-1,或一直線斜率為0,另一直線斜率不存在。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

,則等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),,().
(1)求函數(shù)的極值;
(2)已知,函數(shù), ,判斷并證明的單調(diào)性;
(3)設(shè),試比較,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)要使在區(qū)間(0,1)上單調(diào)遞增,試求a的取值范圍;
(2)若時,圖象上任意一點處的切線的傾斜角為,試求當時,a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù),若直線對任意的都不是曲線的切線,則的取值范圍是         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),若存在使得恒成立,則稱  是
一個“下界函數(shù)” .
(I)如果函數(shù)(t為實數(shù))為的一個“下界函數(shù)”,
求t的取值范圍;
(II)設(shè)函數(shù),試問函數(shù)是否存在零點,若存在,求出零點個數(shù);
若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的最小值為0,其中。
(1)求a的值
(2)若對任意的,有成立,求實數(shù)k的最小值
(3)證明

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的導函數(shù)是(  )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案