(5分)(2011•天津)已知雙曲線﹣=1(a>0,b>0)的左頂點與拋物線y2=2px的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點坐標(biāo)為(﹣2,﹣1),則雙曲線的焦距為( )
A.2 | B.2 | C.4 | D.4 |
B
解析試題分析:根據(jù)題意,點(﹣2,﹣1)在拋物線的準(zhǔn)線上,結(jié)合拋物線的性質(zhì),可得p=4,進而可得拋物線的焦點坐標(biāo),依據(jù)題意,可得雙曲線的左頂點的坐標(biāo),即可得a的值,由點(﹣2,﹣1)在雙曲線的漸近線上,可得漸近線方程,進而可得b的值,由雙曲線的性質(zhì),可得c的值,進而可得答案.
解:根據(jù)題意,雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點坐標(biāo)為(﹣2,﹣1),
即點(﹣2,﹣1)在拋物線的準(zhǔn)線上,又由拋物線y2=2px的準(zhǔn)線方程為x=﹣,則p=4,
則拋物線的焦點為(2,0);
則雙曲線的左頂點為(﹣2,0),即a=2;
點(﹣2,﹣1)在雙曲線的漸近線上,則其漸近線方程為y=±x,
由雙曲線的性質(zhì),可得b=1;
則c=,則焦距為2c=2;
故選B.
點評:本題考查雙曲線與拋物線的性質(zhì),注意題目“雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點坐標(biāo)為(﹣2,﹣1)”這一條件的運用,另外注意題目中要求的焦距即2c,容易只計算到c,就得到結(jié)論.
科目:高中數(shù)學(xué) 來源: 題型:單選題
[2014·張家口模擬]設(shè)F1,F(xiàn)2是雙曲線x2-=1的兩個焦點,P是雙曲線上的一點,且3|PF1|=4|PF2|,則△PF1F2的面積等于 ( )
A.4 | B.8 | C.24 | D.48 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com