【題目】已知函數(shù)f(x)=﹣ (x∈R),區(qū)間M=[a,b](a<b),集合N={y|y=f (x),x∈M}.若M=N,則b﹣a的值是

【答案】2
【解析】解:函數(shù)f(x)=﹣ (x∈R),
化簡得:f(x)= ,可知函數(shù)f(x)是單調(diào)遞減,
∵x∈M,M=[a,b],
則對于集合N中的函數(shù)f(x)的定義域為[a,b],
故得N=[ , ]
對應(yīng)的f(x)的值域為N=M=[a,b].
則有: =a, =b,
解得:b=1,a=﹣1,
故得b﹣a=2,
所以答案是:2.
【考點精析】認真審題,首先需要了解函數(shù)的定義域及其求法(求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零),還要掌握函數(shù)的值域(求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中正確的序號是
①函數(shù)y=ax(a>0且a≠1)與函數(shù) (a>0且a≠1)的定義域相同;
②函數(shù)y=k3x(k>0)(k為常數(shù))的圖象可由函數(shù)y=3x的圖象經(jīng)過平移得到;
③函數(shù) (x≠0)是奇函數(shù)且函數(shù) (x≠0)是偶函數(shù);
④若x1是函數(shù)f(x)的零點,且m<x1<n,則f(m)f(n)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位小學(xué)生各有2008年奧運吉祥物“福娃”5個(其中“貝貝”、“晶晶”、“歡歡”、“迎迎”和“妮妮各一個”),現(xiàn)以投擲一個骰子的方式進行游戲,規(guī)則如下:當(dāng)出現(xiàn)向上的點數(shù)是奇數(shù)時,甲贏得乙一個福娃;否則乙贏得甲一個福娃,規(guī)定擲骰子的次數(shù)達9次時,或在此前某人已贏得所有福娃時游戲終止.記游戲終止時投擲骰子的次數(shù)為ξ
(1)求擲骰子的次數(shù)為7的概率;
(2)求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎,若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益函數(shù)為R(x)= ,其中x是儀器的產(chǎn)量(單位:臺);
(1)將利潤f(x)表示為產(chǎn)量x的函數(shù)(利潤=總收益﹣總成本);
(2)當(dāng)產(chǎn)量x為多少臺時,公司所獲利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)z=k﹣2i(k∈R)的共軛復(fù)數(shù) ,且z﹣( ﹣i)= ﹣2i.
(1)求k的值;
(2)若過點(0,﹣2)的直線l的斜率為k,求直線l與曲線y= 以及y軸所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

在直角坐標(biāo)系中圓C的參數(shù)方程為為參數(shù)),以原點O為極點, 軸的非負半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求圓C的直角坐標(biāo)方程及其圓心C的直角坐標(biāo);

(2)設(shè)直線與曲線交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各式中,所得數(shù)值最小的是( )
A.sin50°cos39°﹣sin40°cos51°
B.﹣2sin240°+1
C.2sin6°cos6°
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(sinx+ cosx)2﹣2.
(1)當(dāng)x∈[0, ]時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[﹣ , ],求函數(shù)g(x)= f2(x)﹣f(x+ )﹣1的值域.

查看答案和解析>>

同步練習(xí)冊答案