正方形的邊長為2,分別為邊的中點,是線段的中點,如圖,把正方形沿折起,設(shè).
(1)求證:無論取何值,與不可能垂直;
(2)設(shè)二面角的大小為,當(dāng)時,求的值.
(1)與不可能垂直; (2)的值為.
解析試題分析:(1)假設(shè), 1分
又因為,,所以平面, 3分
所以,又,所以, 5分
這與矛盾,所以假設(shè)不成立,所以與不可能垂直; 6分
(2)分別以為軸,過點垂直平面向上為軸,如圖建立坐標(biāo)系,
設(shè)平面的一個法向量為,
,
, 7分
得, 8分
設(shè)平面的一個法向量為,
,, 9分
得, 10分
11分
=, 12分
得, 13分
所以當(dāng)時,的值為. 14分
考點:折疊問題,平行關(guān)系,垂直關(guān)系,角的計算。
點評:中檔題,立體幾何問題中,平行關(guān)系、垂直關(guān)系,角、距離、面積、體積等的計算,是常見題型,基本思路是將空間問題轉(zhuǎn)化成為平面問題,利用平面幾何知識加以解決。要注意遵循“一作,二證,三計算”。利用“向量法”,通過建立空間直角坐標(biāo)系,往往能簡化解題過程。對于折疊問題,首先要弄清“變”與“不變”的幾何元素。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分別是線段BC,B1C1的中點,P是線段AD的中點.
(I)在平面ABC內(nèi),試做出過點P與平面A1BC平行的直線l,說明理由,并證明直線l⊥平面ADD1A1;
(II)設(shè)(I)中的直線l交AB于點M,交AC于點N,求二面角A﹣A1M﹣N的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com