設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對(duì)應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個(gè)虛根,且|β|=2,求實(shí)數(shù)m的值;
(2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)a∈ (
3
2
 , 3)
),當(dāng)n為奇數(shù)時(shí),動(dòng)點(diǎn)P(x、y)的軌跡為C1.當(dāng)n為偶數(shù)時(shí),動(dòng)點(diǎn)P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點(diǎn)D(2,
2
)
,求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)B(x0,0)(x0>0)的最小距離不小于
2
3
3
,求實(shí)數(shù)x0的取值范圍.
分析:(1)由實(shí)系數(shù)方程虛根成對(duì),利用韋達(dá)定理直接求出m的值.
(2)方法一:分n為奇數(shù)和偶數(shù),化出a的范圍,聯(lián)立雙曲線方程,求出a值,推出雙曲線方程即可.
方法二:由題意分a的奇偶數(shù),聯(lián)立方程組,求出復(fù)數(shù)β,解出a,根據(jù)雙曲線的定義求出雙曲線方程.
(3)設(shè)點(diǎn)A的坐標(biāo),求出|AB|表達(dá)式,根據(jù)x范圍,x的對(duì)稱軸討論0<x0
3
3
2
,x0
3
3
2
時(shí),|AB|的最小值,不小于
2
3
3
,求出實(shí)數(shù)x0的取值范圍.
解答:解:(1)β是方程的一個(gè)虛根,則
.
β
是方程的另一個(gè)虛根,(2分)
β•
.
β
=m=|β|2=4
,所以m=4(2分)
(2)方法1:①當(dāng)n為奇數(shù)時(shí),|α+3|-|α-3|=2a,常數(shù)a∈ (
3
2
 , 3)
),
軌跡C1為雙曲線,其方程為
x2
a2
-
y2
9-a2
=1
;(2分)
②當(dāng)n為偶數(shù)時(shí),|α+3|+|α-3|=4a,常數(shù)a∈ (
3
2
 , 3)
),
軌跡C2為橢圓,其方程為
x2
4a2
+
y2
4a2-9
=1
;(2分)
依題意得方程組
4
4a2
+
2
4a2-9
=1
4
a2
-
2
9-a2
=1
?
4a4-45a2+99=0
a4-15a2+36=0  

解得a2=3,
因?yàn)?span id="n9k6sch" class="MathJye">
3
2
<a<3,所以a=
3
,
此時(shí)軌跡為C1與C2的方程分別是:
x2
3
-
y2
6
=1
,
x2
12
+
y2
3
=1
.(2分)
方法2:依題意得
|β+3|+|β-3|=4a
|β+3|-|β-3|=2a
?
|β+3|=3a
|β-3|=a
(2分)
軌跡為C1與C2都經(jīng)過點(diǎn)D(2,
2
)
,且點(diǎn)D(2,
2
)
對(duì)應(yīng)的復(fù)數(shù)β=2+
2
i
,
代入上式得a=
3
,(2分)
|β+3|-|β-3|=2
3
對(duì)應(yīng)的軌跡C1是雙曲線,方程為
x2
3
-
y2
6
=1

|β+3|+|β-3|=4
3
對(duì)應(yīng)的軌跡C2是橢圓,方程為
x2
12
+
y2
3
=1
.(2分)
(3)由(2)知,軌跡C2
x2
12
+
y2
3
=1
,設(shè)點(diǎn)A的坐標(biāo)為(x,y),
|AB|2=(x-x0)2+y2=(x-x0)2+3-
1
4
x2

=
3
4
x2-2x0x+
x
2
0
+3=
3
4
(x-
4
3
x0)2+3-
1
3
x
2
0
,
x∈[-2
3
,2
3
]
(2分)
當(dāng)0<
4
3
x0≤2
3
0<x0
3
3
2
時(shí),|AB|2min=3-
1
3
x
2
0
4
3
?0<x0
5

當(dāng)
4
3
x0>2
3
x0
3
3
2
時(shí),|AB|min=|x0-2
3
|≥
2
3
3
?x0
8
3
3
,(2分)
綜上0<x0
5
x0
8
3
3
.(2分),
點(diǎn)評(píng):本題考查復(fù)數(shù)的基本概念,軌跡方程,直線與圓錐曲線的綜合問題,考查分類討論思想,轉(zhuǎn)化思想,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)β=x+yi(x、y∈R)與復(fù)平面上點(diǎn)P(x,y)對(duì)應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個(gè)虛根,且|β|=2|,求實(shí)數(shù)m的值.
(2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*,a∈(
3
2
,3)
),當(dāng)n為奇數(shù)時(shí),動(dòng)點(diǎn)P(x,y)的軌跡為C1;當(dāng)n為偶數(shù)時(shí),動(dòng)點(diǎn)P(x,y)的軌跡為C2,且兩條曲線都經(jīng)過點(diǎn)D(2,
2
)
,求軌跡C1與的C2方程?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對(duì)應(yīng),且復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*.常數(shù)a∈(
3
2
,3)
),當(dāng)n為奇數(shù)時(shí),動(dòng)點(diǎn)P(x,y)的軌跡為C1,當(dāng)n為偶數(shù)時(shí),動(dòng)點(diǎn)P(x,y)的軌跡為C2,且兩條曲線都經(jīng)過點(diǎn)D(2,
2
),求軌跡C1與C2的方程?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市浦東新區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對(duì)應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個(gè)虛根,且|β|=2,求實(shí)數(shù)m的值;
(2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)),當(dāng)n為奇數(shù)時(shí),動(dòng)點(diǎn)P(x、y)的軌跡為C1.當(dāng)n為偶數(shù)時(shí),動(dòng)點(diǎn)P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點(diǎn),求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)B(x,0)(x>0)的最小距離不小于,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市浦東新區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對(duì)應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個(gè)虛根,且|β|=2,求實(shí)數(shù)m的值;
(2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)),當(dāng)n為奇數(shù)時(shí),動(dòng)點(diǎn)P(x、y)的軌跡為C1.當(dāng)n為偶數(shù)時(shí),動(dòng)點(diǎn)P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點(diǎn),求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)B(x,0)(x>0)的最小距離不小于,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案