已知曲線所圍成的封閉圖形的面積為,曲線C1的內(nèi)切圓半徑為.記C2為以曲線C1與坐標(biāo)軸的交點為頂點的橢圓.
(Ⅰ)求橢圓C2的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)AB是過橢圓C2中心的任意弦,l是線段AB的垂直平分線.M是l上異于橢圓中心的點.
(1)若|MO|=λ|OA|(O為坐標(biāo)原點),當(dāng)點A在橢圓C2上運動時,求點M的軌跡方程;
(2)若M是l與橢圓C2的交點,求△AMB的面積的最小值.
(Ⅰ)由題意得 又,解得,. 因此所求橢圓的標(biāo)準(zhǔn)方程為. (Ⅱ)(1)假設(shè)所在的直線斜率存在且不為零,設(shè)所在直線方程為 ,. 解方程組得,, 所以. 設(shè),由題意知, 所以,即, 因為是的垂直平分線,所以直線的方程為,即, 因此, 又,所以,故. 又當(dāng)或不存在時,上式仍然成立. 綜上所述,的軌跡方程為. (2)當(dāng)存在且時,由(1)得,, 由解得,, 所以,,. 解法一:由于 , 當(dāng)且僅當(dāng)時等號成立,即時等號成立, 此時面積的最小值是. 當(dāng),. 當(dāng)不存在時,. 綜上所述,的面積的最小值為. 解法二:因為, 又,, 當(dāng)且僅當(dāng)時等號成立,即時等號成立,此時面積的最小值是. 當(dāng),. 當(dāng)不存在時,. 綜上所述,的面積的最小值為. |
科目:高中數(shù)學(xué) 來源: 題型:
(08年山東卷文)(本小題滿分14分)
已知曲線所圍成的封閉圖形的面積為,曲線的內(nèi)切圓半徑為.記為以曲線與坐標(biāo)軸的交點為頂點的橢圓.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)是過橢圓中心的任意弦,是線段的垂直平分線.是上異于橢圓中心的點.
(1)若(為坐標(biāo)原點),當(dāng)點在橢圓上運動時,求點的軌跡方程;
(2)若是與橢圓的交點,求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
已知曲線所圍成的封閉圖形的面積為,曲線的內(nèi)切圓半徑為.記為以曲線與坐標(biāo)軸的交點為頂點的橢圓.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)是過橢圓中心的任意弦,是線段的垂直平分線.是上異于橢圓中心的點.
(1)若(為坐標(biāo)原點),當(dāng)點在橢圓上運動時,求點的軌跡方程;
(2)若是與橢圓的交點,求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知曲線所圍成的封閉圖形的面積為,曲線的內(nèi)
切圓半徑為.記為以曲線與坐標(biāo)軸的交點為頂點的橢圓。
(I)求橢圓的標(biāo)準(zhǔn)方程,
(Ⅱ)設(shè)AB是過橢圓中心的任意弦,是線段AB的垂直平分線。M是上異于橢圓
中心的點。
(1)若(為坐標(biāo)原點),當(dāng)點A在橢圓上運動時,求點M的軌跡方
程;
(2)若M是與橢圓的交點,求△AMB的面積的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008年山東省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com