“光盤行動”倡導(dǎo)厲行節(jié)約,反對鋪張浪費,帶動大家珍惜糧食,吃光盤子中的食物,得到從中央到民眾的支持,為了解某地響應(yīng)“光盤行動”的實際情況,某校幾位同學(xué)組成研究性學(xué)習(xí)小組,從某社區(qū)歲的人群中隨機抽取n人進(jìn)行了一次調(diào)查,得到如下統(tǒng)計表:

(1)求a,b的值,并估計本社區(qū)歲的人群中“光盤族”所占比例;
(2)從年齡段在的“光盤族”中,采用分層抽樣方法抽取8人參加節(jié)約糧食宣傳活動,并從這8人中選取2人作為領(lǐng)隊.
(1)已知選取2人中1人來自中的前提下,求另一人來自年齡段中的概率;
(2)求2名領(lǐng)隊的年齡之和的期望值(每個年齡段以中間值計算).

(1)
(2)(。 
(ⅱ)









 

解析試題分析:(1)依次計算
樣本中的“光盤族”人數(shù)為,從而得到樣本中“光盤族”所占比例為.
(2)(ⅰ)記事件A為“其中人來自年齡段”,事件B為“另一人來自年齡段”,
計算條件概率為 
(ⅱ)設(shè)名領(lǐng)隊的年齡之和為隨機變量,則的取值為
計算以下概率即得.

根據(jù)數(shù)學(xué)期望計算公式得解.
(1),,
,
樣本中的“光盤族”人數(shù)為
,
樣本中“光盤族”所占比例為% .                   4分
(2)(。┯浭录嗀為“其中人來自年齡段”,事件B為“另一人來自年齡段”,
所以概率為         8分
(ⅱ)設(shè)名領(lǐng)隊的年齡之和為隨機變量,則的取值為









 
所以                 12分
考點:條件概率,頻率分布表,離散型隨機變量的分布列及數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工藝廠開發(fā)一種新工藝品,頭兩天試制中,該廠要求每位師傅每天制作10件,該廠質(zhì)檢部每天從每位師傅制作的10件產(chǎn)品中隨機抽取4件進(jìn)行檢查,若發(fā)現(xiàn)有次品,則當(dāng)天該師傅的產(chǎn)品不能通過.已知李師傅第一天、第二天制作的工藝品中分別有2件、1件次品.
(1)求兩天中李師傅的產(chǎn)品全部通過檢查的概率;
(2)若廠內(nèi)對師傅們制作的工藝品采用記分制,兩天都不通過檢查的得0分,兩天中只通過一天檢查的得1分,兩天都通過檢查的得2分,求李師傅在這兩天內(nèi)得分的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市教育局為了了解高三學(xué)生體育達(dá)標(biāo)情況,在某學(xué)校的高三學(xué)生體育達(dá)標(biāo)成績中隨機抽取100個進(jìn)行調(diào)研,按成績分組:第l組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示:

若要在成績較高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)行復(fù)查:
(1)已知學(xué)生甲和學(xué)生乙的成績均在第四組,求學(xué)生甲和學(xué)生乙至少有一人被選中復(fù)查的概率;
(2)在已抽取到的6名學(xué)生中隨機抽取3名學(xué)生接受籃球項目的考核,設(shè)第三組中有三名學(xué)生接受籃球項目的考核,求暑的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知5個乒乓球,其中3個新的,2個舊的,每次取1個,不放回的取兩次,  
求:(1)第一次取到新球的概率.
(2)第二次取到新球的概率.
(3)在第一次取到新球的條件下第二次取到新球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機選擇3月1日至3月13日中的某一天到達(dá)該市,并停留2天.
(1)求此人到達(dá)當(dāng)日空氣質(zhì)量優(yōu)良的概率;
(2)求此人在該市停留期間只有1天空氣重度污染的概率;
(3)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校在一次運動會上,將要進(jìn)行甲、乙兩名同學(xué)的乒乓球冠亞軍決賽,比賽實行三局兩勝制.已知每局比賽中,若甲先發(fā)球,其獲勝的概率為,否則其獲勝的概率為.
(1)若在第一局比賽中采用擲硬幣的方式?jīng)Q定誰先發(fā)球,試求甲在此局獲勝的概率;
(2)若第一局由乙先發(fā)球,以后每局由負(fù)方先發(fā)球.規(guī)定勝一局記2分,負(fù)一局記0分,記為比賽結(jié)束時甲的得分,求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一袋中裝有4個形狀、大小完全相同的球,其中黑球2個,白球2個,假設(shè)每個小球從袋中被取出的可能性相同,首相由甲取出2個球,并不在將他們原袋中,然后由乙取出剩下的2個球.規(guī)定取出一個黑球記1分,取出一個白球記2分,取出球的總積分多者獲勝.
(1)求甲、乙平局的概率;
(2)假設(shè)可以選擇取球的先后順序,應(yīng)選擇先取,還是后取,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在一次面試中,每位考生從4道題a、b、c、d中任抽兩題做,假設(shè)每位考生抽到各題的可能性相等,且考生相互之間沒有影響.
(1)若甲考生抽到a、b題,求乙考生與甲考生恰好有一題相同的概率;
(2)設(shè)某兩位考生抽到的題中恰好有X道相同,求隨機變量X的概率分布.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知復(fù)數(shù)z=x+yi(x,y∈R)在復(fù)平面上對應(yīng)的點為M.
(1)設(shè)集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機取一個數(shù)作為x,從集合Q中隨機取一個數(shù)作為y,求復(fù)數(shù)z為純虛數(shù)的概率.
(2)設(shè)x∈[0,3],y∈[0,4],求點M落在不等式組:
所表示的平面區(qū)域內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊答案