(本題滿(mǎn)分12分)已知半徑為6的圓軸相切,圓心在直線上且在第二象限,直線過(guò)點(diǎn)

(Ⅰ)求圓的方程;

(Ⅱ)若直線與圓相交于兩點(diǎn)且,求直線的方程.

 

【答案】

(Ⅰ) (Ⅱ)

【解析】

試題分析:(Ⅰ)由題意,設(shè)圓心

由圓的半徑,又圓軸相切,則,即.所以,

所以圓的方程為.                                             ……5分

(Ⅱ)設(shè)方程為,

,                                        ……10分

方程為時(shí)也符合題意,故所求直線方程為.             ……12分

考點(diǎn):本小題主要考查圓的標(biāo)準(zhǔn)方程的求法、直線與圓的位置關(guān)系及應(yīng)用,考查學(xué)生的運(yùn)算求解能力和數(shù)形結(jié)合思想的應(yīng)用.

點(diǎn)評(píng):直線與圓有相切、相交和相離三種位置關(guān)系,遇到直線與圓相交時(shí),要注意到半徑、半弦長(zhǎng)和圓心到弦的距離構(gòu)成一個(gè)直角三角形,要注意靈活應(yīng)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

( 本題滿(mǎn)分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:安徽省合肥一中、六中、一六八中學(xué)2010-2011學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題

(本題滿(mǎn)分12分)已知△的三個(gè)內(nèi)角、所對(duì)的邊分別為、、.,且.(1)求的大;(2)若.求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分12分)已知各項(xiàng)均為正數(shù)的數(shù)列,
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為T(mén)n,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省揭陽(yáng)市高三調(diào)研檢測(cè)數(shù)學(xué)理卷 題型:解答題

(本題滿(mǎn)分12分)

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,是它的左,右焦點(diǎn).

(1)若,且,,求的坐標(biāo);

(2)在(1)的條件下,過(guò)動(dòng)點(diǎn)作以為圓心、以1為半徑的圓的切線是切點(diǎn)),且使,求動(dòng)點(diǎn)的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年遼寧省高二上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分12分)已知橢圓的長(zhǎng)軸,短軸端點(diǎn)分別是A,B,從橢圓上一點(diǎn)M向x軸作垂線,恰好通過(guò)橢圓的左焦點(diǎn),向量是共線向量

(1)求橢圓的離心率

(2)設(shè)Q是橢圓上任意一點(diǎn),分別是左右焦點(diǎn),求的取值范圍

 

查看答案和解析>>

同步練習(xí)冊(cè)答案