{an}為等差數(shù)列,公差d≠0,an≠0,(n∈N*),且akx2+2ak+1x+ak+2=0(k∈N*)
(1)求證:當(dāng)k取不同自然數(shù)時(shí),此方程有公共根;
(2)若方程不同的根依次為x1,x2,…,xn,…,
求證:數(shù)列為等差數(shù)列.
證明同解析
(1)∵{an}是等差數(shù)列,∴2ak+1=ak+ak+2,
故方程akx2+2ak+1x+ak+2=0可變?yōu)?akx+ak+2)(x+1)=0,
∴當(dāng)k取不同自然數(shù)時(shí),原方程有一個(gè)公共根-1 
(2)原方程不同的根為xk=


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


已知函數(shù),數(shù)列滿足:

(Ⅰ)求證:;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)求證不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)設(shè)數(shù)列的前和為,已知,,,
一般地,).
(Ⅰ)求;(Ⅱ)求;(Ⅲ)求和:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)的序列An(xn,0),n∈N,其中x1=0,x2=a(a>0),A3是線段A1A2的中點(diǎn),A4是線段A2A3的中點(diǎn),…,An是線段An2An1的中點(diǎn),….
(1)寫出xnxn1、xn2之間關(guān)系式(n≥3);
(2)設(shè)an=xn+1xn,計(jì)算a1,a2,a3,由此推測(cè)數(shù)列{an}的通項(xiàng)公式,并加以證明;
(3)求xn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知是各項(xiàng)都為正數(shù)的數(shù)列,為其前項(xiàng)的和,且
(I)分別求,的值;(II)求數(shù)列的通項(xiàng);(III)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


已知等差數(shù)列的前項(xiàng)和為,公差成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若從數(shù)列中依次取出第2項(xiàng)、第4項(xiàng)、第8項(xiàng),……,,……,按原來順序組成一個(gè)新數(shù)列,記該數(shù)列的前項(xiàng)和為,求的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若數(shù)列滿足,則稱數(shù)列為調(diào)和數(shù)列。已知數(shù)列為調(diào)和數(shù)列,且,則     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是首項(xiàng)為1的正項(xiàng)數(shù)列,且,(n∈N*),求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列中,,,求使的最小正整數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案