已知等差數(shù)列的前三項(xiàng)依次為a,4,3a,前n項(xiàng)和為Sn,且Sk=110.
(1)求a及k的值;
(2)設(shè)數(shù)列{bn}的通項(xiàng)bn=,證明數(shù)列{bn}是等差數(shù)列,并求其前n項(xiàng)和Tn.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是首項(xiàng)和公比均為的等比數(shù)列,設(shè).
(1)求證數(shù)列是等差數(shù)列;
(2)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,為常數(shù),,且成公比不等于1的等比數(shù)列
(1)求的值;
(2)設(shè),求數(shù)列的前項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}滿足:an+1>an(n∈N*),a1=1,該數(shù)列的前三項(xiàng)分別加上1,1,3后順次成為等比數(shù)列{bn}的前三項(xiàng).
(1)分別求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)Tn=(n∈N*),若Tn+<c(c∈Z)恒成立,求c的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=-62,S6=-75,求:
(1){an}的通項(xiàng)公式an及其前n項(xiàng)和Sn;
(2)|a1|+|a2|+|a3|+…+|a14|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}、{bn}、{cn}滿足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…),求證:{an}為等差數(shù)列的充分必要條件是{cn}為等差數(shù)列且bn≤bn+1(n=1,2,3,…).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}的首項(xiàng)為a,公差為d,且方程ax2-3x+2=0的解為1,d.
(1)求{an}的通項(xiàng)公式及前n項(xiàng)和公式;
(2)求數(shù)列{3n-1an}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+S2=12,q=.
(1)求an與bn.
(2)證明:≤++…+<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}滿足a2=0,a6+a8=-10.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com