關(guān)于直線對稱,則的取值范圍是(  )
A.(-∞,]B.(0,]C.(-,0)D.(-∞,)
A
解:因為圓關(guān)于直線對稱,則
說明直線過圓心,則有-2a-2b+2=0,a+b=1,那么
利用二次函數(shù)的值域可知它的取值范圍是(-∞,]
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,D,E分別是△ABC邊AB,AC的中點,直線DE交△ABC的外接圓與F,G兩點,若CF∥AB,證明:

(Ⅰ) CD=BC;
(Ⅱ)△BCD∽△GBD.
【命題意圖】本題主要考查線線平行判定、三角形相似的判定等基礎(chǔ)知識,是簡單題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知點P(2,0),及圓C:x2+y2-6x+4y+4=0.
(1)當(dāng)直線l過點P且與圓心C的距離為1時,求直線l的方程;
(2)設(shè)過點P的直線與圓C交于A、B兩點,當(dāng)|AB|=4,求以線段AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選修4-4:坐標(biāo)系與參數(shù)方程
(Ⅰ)求直線為參數(shù))的傾斜角的大小.
(Ⅱ)在極坐標(biāo)系中,已知點是曲線上任意一點,求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓N:(x+2)2+y2=8和拋物線C: y2= 2x,圓N的切線l與拋物線C交于不同的兩點A,B.
(I)當(dāng)直線l的斜率為1時,求線段AB的長;
(II)設(shè)點M和點N關(guān)于直線y=x對稱,問是否存在直線l,使得?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)中,圓,圓。
(Ⅰ)在以O(shè)為極點,x軸正半軸為極軸的極坐標(biāo)系中,分別寫出圓的極坐標(biāo)方程,并求出圓的交點坐標(biāo)(用極坐標(biāo)表示);
(Ⅱ)求圓的公共弦的參數(shù)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩圓相交于兩點,直線將這兩圓的面積均平分,則的值是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m>0,則直線xy+1+m=0與圓x2y2m的位置關(guān)系是(  )
A.相切B.相交C.相切或相離D.相交或相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

經(jīng)過點(0,-1)作圓的切線,切點分別為A和B,點Q是圓C上一點,則面積的最大值為      。

查看答案和解析>>

同步練習(xí)冊答案