(本小題滿分12分)已知橢圓過點(diǎn)A(a,0),B(0,b)的直
線傾斜角為,原點(diǎn)到該直線的距離為.
(1)求橢圓的方程;
(2)斜率小于零的直線過點(diǎn)D(1,0)與橢圓交于M,N兩點(diǎn),若求直線MN的方程;
(3)是否存在實(shí)數(shù)k,使直線交橢圓于P、Q兩點(diǎn),以PQ為直徑的圓過點(diǎn)D(1,0)?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由。
解:(Ⅰ)由 ,得,
所以橢圓方程是:……………………3分
(Ⅱ)設(shè)MN:代入,得,
設(shè),由,得
,……………………6分
,(舍去)
直線的方程為:……………………8分
(Ⅲ)將代入,得(*)
,為直徑的圓過,則,即
,又,得
………①
,代入①解得……………11分
此時(shí)(*)方程,存在,滿足題設(shè)條件.…………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,則的值為   ( ) 
     B           C  2           D  4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在橢圓內(nèi)有一點(diǎn)為橢圓的右焦點(diǎn),在橢圓上有一點(diǎn)
使的值最小,則此最小值為                (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)橢圓C:長(zhǎng)軸為8離心率
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓C內(nèi)一點(diǎn)M(2,1)引一條弦,使弦被點(diǎn)M平分,
求這條弦所在的直線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓過點(diǎn),且離心率為.
(1)求橢圓的方程;
(2)為橢圓的左右頂點(diǎn),點(diǎn)是橢圓上異于的動(dòng)點(diǎn),直線分別交直線兩點(diǎn).證明:以線段為直徑的圓恒過軸上的定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.(本小題滿分13分)
已知橢圓的焦點(diǎn)為, 
離心率為,直線軸,軸分別交于點(diǎn),
(Ⅰ)若點(diǎn)是橢圓的一個(gè)頂點(diǎn),求橢圓的方程;
(Ⅱ)若線段上存在點(diǎn)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)F(c,0)為橢圓的右焦點(diǎn),橢圓上的點(diǎn)與點(diǎn)F的距
離的最大值為M,最小值為m,則橢圓上與F點(diǎn)的距離是的點(diǎn)是
A.(B.(0,C.(D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

P為橢圓上一點(diǎn),F(xiàn)1、F2是橢圓的左、右焦點(diǎn),若使△F1PF2為直角三角形的點(diǎn)P共有8個(gè),則橢圓離心率的取值范圍是            

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的離心率為,若直線與其一個(gè)交點(diǎn)的橫坐標(biāo)為,則的值為                

查看答案和解析>>

同步練習(xí)冊(cè)答案