【題目】南康某服裝廠擬在年舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元滿足.已知年生產(chǎn)該產(chǎn)品的固定投入為萬元,每生產(chǎn)萬件該產(chǎn)品需要再投入萬元.廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的倍(產(chǎn)品成本包括固定投入和再投入兩部分資金,不包括促銷費用).
(1)將年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);
(2)該服裝廠年的促銷費用投入多少萬元時,利潤最大?
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橢圓: 的左、右焦點分別為,兩焦點與短軸的一個頂點構成等腰直角三角形,且點在橢圓上.
(1)求橢圓的標準方程;
(2)如圖所示,過橢圓的左焦點作直線(斜率存在且不為0)交橢圓于兩點,過右焦點作直線交橢圓于兩點,且,直線交軸于點,動點(異于)在橢圓上運動.
①證明: 為常數(shù);
②當時,利用上述結論求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
試銷單價(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量(件) | 84 | 83 | 80 | 75 | 68 |
已知.
(1)求出的值;
(2)已知變量具有線性相關關系,求產(chǎn)品銷量(件)關于試銷單價(元)的線性回歸方程;可供選擇的數(shù)據(jù):,;
(3)用表示用(2)中所求的線性回歸方程得到的與對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取3個,求“好數(shù)據(jù)”個數(shù)的分布列和數(shù)學期望.
(參考公式:線性回歸方程中的最小二乘估計分別為,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,直線過點且傾斜角為.
(1)求曲線的直角坐標方程和直線的參數(shù)方程;
(2)設直線與曲線交于, 兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列.如果數(shù)列滿足, ,其中,則稱為的“陪伴數(shù)列”.
(Ⅰ)寫出數(shù)列的“陪伴數(shù)列”;
(Ⅱ)若的“陪伴數(shù)列”是.試證明: 成等差數(shù)列.
(Ⅲ)若為偶數(shù),且的“陪伴數(shù)列”是,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)圖像在處的切線方程;
(2)證明:;
(3)若不等式對于任意的均成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結果如下:
(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)能否有99%的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com