△ABC的面積是30,內(nèi)角A,B,C所對(duì)邊長分別為a,b,c,cosA=
(Ⅰ)求;
(Ⅱ)若c-b=1,求a的值.
【答案】分析:根據(jù)本題所給的條件及所要求的結(jié)論可知,需求bc的值,考慮已知△ABC的面積是30,cosA=,所以先求sinA的值,然后根據(jù)三角形面積公式得bc的值.第二問中求a的值,根據(jù)第一問中的結(jié)論可知,直接利用余弦定理即可.根據(jù)同角三角函數(shù)關(guān)系,由cosA=得sinA的值,再根據(jù)△ABC面積公式得bc=156;直接求數(shù)量積.由余弦定理a2=b2+c2-2bccosA,代入已知條件c-b=1,及bc=156求a的值.
解答:解:由cosA=,得sinA==
sinA=30,∴bc=156.
(Ⅰ)=bccosA=156×=144.
(Ⅱ)a2=b2+c2-2bccosA=(c-b)2+2bc(1-cosA)=1+2•156•(1-)=25,
∴a=5.
點(diǎn)評(píng):本題考查同角三角函數(shù)的基本關(guān)系,三角形面積公式,向量的數(shù)量積,利用余弦定理解三角形以及運(yùn)算求解能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的面積是30,內(nèi)角A,B,C所對(duì)邊長分別為a,b,c,cosA=
12
13

(Ⅰ)求
AB
AC
;
(Ⅱ)若c-b=1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的面積是30,內(nèi)角A、B、C所對(duì)邊分別為a、b、c,cosA=
12
13
.若c-b=1,則a的值是( 。
A、3B、4C、5D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的面積是30,其內(nèi)角A、B、C所對(duì)邊的長分別為a,b,c,且滿足cosA=
1213
,c-b=1,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,△ABC的面積是30,內(nèi)角A,B,C,所對(duì)邊長分別為a,b,c,cosA=
1213

(1)求c•b;
(2)若c-b=1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省湛江市雷州市白沙中學(xué)高二(上)段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

△ABC的面積是30,內(nèi)角A,B,C所對(duì)邊長分別為a,b,c,cosA=
(Ⅰ)求;
(Ⅱ)若c-b=1,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案