(本小題滿分12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,,

(1)求直線與平面所成角的正弦值;
(2)線段上是否存在點,使// 平面?若存在,求出;若不存在,說明理由.1

(1)直線與平面所成角的正弦值為
(3)點滿足時,有// 平面

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知三棱錐的底面是直角三角形,且,平面,是線段的中點,如圖所示.

(Ⅰ)證明:平面
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直棱柱ABCD—A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求證:平面ACB1⊥平面BB1C1C;
(2)在A1B1上是否存在一點P,使得DP與平面ACB1平行?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖1,在直角梯形中,,,且
現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,的中點,如圖2.
(1)求證:∥平面
(2)求證:平面
(3)求點到平面的距離.
  
                                    圖

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且GEF的中
點.

(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點.

(1)請在線段CE上找到點F的位置,使得恰有直線BF∥平面ACD,并證明這一事實;
(2)求平面BCE與平面ACD所成銳二面角的大;
(3)求點G到平面BCE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角梯形PBCD中,,A為PD的中點,如下左圖。將沿AB折到的位置,使,點E在SD上,且,如下圖。
(1)求證:平面ABCD;
(2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖:在多面體EF-ABCD中,四邊形ABCD是平行四邊形,△EAD為正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求多面體EF-ABCD的體積;
(Ⅱ)求直線BD與平面BCF所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,已知多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,FCD的中點.

(Ⅰ)求證:AF⊥平面CDE;
(Ⅱ)求面ACD和面BCE所成銳二面角的大。

查看答案和解析>>

同步練習(xí)冊答案