【題目】解不等式( x﹣x+ >0時,可構(gòu)造函數(shù)f(x)=( x﹣x,由f(x)在x∈R是減函數(shù),及f(x)>f(1),可得x<1.用類似的方法可求得不等式arcsinx2+arcsinx+x6+x3>0的解集為(
A.(0,1]
B.(﹣1,1)
C.(﹣1,1]
D.(﹣1,0)

【答案】A
【解析】解:由題意,構(gòu)造函數(shù)g(x)=arcsinx+x3 , 在x∈[﹣1,1]上是增函數(shù),且是奇函數(shù), 不等式arcsinx2+arcsinx+x6+x3>0可化為g(x2)>g(﹣x),
∴﹣1≤﹣x<x2≤1,
∴0<x≤1,
故選:A.
【考點精析】本題主要考查了類比推理的相關(guān)知識點,需要掌握根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另外一類事物類似的性質(zhì)的推理,叫做類比推理才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sinA, )與 =(3,sinA+ )共線,其中A是△ABC的內(nèi)角.
(1)求角A的大小;
(2)若BC=2,求△ABC面積S的最大值,并判斷S取得最大值時△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,A,B,C的對邊分別為a、b、c, ,△ABC的面積為
(Ⅰ)求c的值;
(Ⅱ)求cos(B﹣C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b∈R,函數(shù) ,g(x)=ex(e為自然對數(shù)的底數(shù)),且函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若g(x)>f(x)在區(qū)間(﹣∞,0)內(nèi)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn , a1=1,滿足 , ,
(1)求證:數(shù)列 為等比數(shù)列;
(2)求數(shù)列{Sn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C: =1經(jīng)過點(2,3),兩條漸近線的夾角為60°,直線l交雙曲線于A,B兩點.
(1)求雙曲線C的方程;
(2)若l過原點,P為雙曲線上異于A,B的一點,且直線PA,PB的斜率kPA , kPB均存在,求證:kPAkPB為定值;
(3)若l過雙曲線的右焦點F1 , 是否存在x軸上的點M(m,0),使得直線l繞點F1無論怎樣轉(zhuǎn)動,都有 =0成立?若存在,求出M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x+cos2 ﹣x)﹣ (x∈R).
(1)求函數(shù)f(x)在區(qū)間[0, ]上的最大值;
(2)在△ABC中,若A<B,且f(A)=f(B)= ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{bn}的前n項和為Sn , 且對任意正整數(shù)n,都有 ;
(1)試證明數(shù)列{bn}是等差數(shù)列,并求其通項公式;
(2)如果等比數(shù)列{an}共有2017項,其首項與公比均為2,在數(shù)列{an}的每相鄰兩項ai與ai+1之間插入i個(﹣1)ibi(i∈N*)后,得到一個新數(shù)列{cn},求數(shù)列{cn}中所有項的和;
(3)如果存在n∈N* , 使不等式 成立,若存在,求實數(shù)λ的范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年上半年,股票投資人袁先生同時投資了甲、乙兩只股票,其中甲股票賺錢的概率為 ,賠錢的概率是 ;乙股票賺錢的概率為 ,賠錢的概率為 .對于甲股票,若賺錢則會賺取5萬元,若賠錢則損失4萬元;對于乙股票,若賺錢則會賺取6萬元,若賠錢則損失5萬元. (Ⅰ)求袁先生2016年上半年同時投資甲、乙兩只股票賺錢的概率;
(Ⅱ)試求袁先生2016年上半年同事投資甲、乙兩只股票的總收益的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案